空间和光谱成像融合的数据关联

A. Schaum
{"title":"空间和光谱成像融合的数据关联","authors":"A. Schaum","doi":"10.1109/AIPR.2003.1284254","DOIUrl":null,"url":null,"abstract":"Conventional spatial imaging of the same object at different times or with different sensing modalities often requires the identification of corresponding points within a solid object. A mathematically similar problem occurs in the remote hyperspectral imaging of one scene at two widely separated time intervals. In both cases the information can be interpreted using linear vector spaces, and the differences in sensed signals can be modeled with linear transformations of these spaces. Here we explore first, how much can be deduced about the transformations based solely on the multivariate statistics of the two data sets. Then we solve application-specific models for each of conventional and hyperspectral applications.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data association for fusion in spatial and spectral imaging\",\"authors\":\"A. Schaum\",\"doi\":\"10.1109/AIPR.2003.1284254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional spatial imaging of the same object at different times or with different sensing modalities often requires the identification of corresponding points within a solid object. A mathematically similar problem occurs in the remote hyperspectral imaging of one scene at two widely separated time intervals. In both cases the information can be interpreted using linear vector spaces, and the differences in sensed signals can be modeled with linear transformations of these spaces. Here we explore first, how much can be deduced about the transformations based solely on the multivariate statistics of the two data sets. Then we solve application-specific models for each of conventional and hyperspectral applications.\",\"PeriodicalId\":176987,\"journal\":{\"name\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2003.1284254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在不同时间或用不同传感方式对同一物体进行常规空间成像时,往往需要识别固体物体内的相应点。一个数学上类似的问题出现在一个场景在两个相隔很远的时间间隔的远程高光谱成像中。在这两种情况下,信息都可以使用线性向量空间来解释,并且可以用这些空间的线性变换来建模感测信号的差异。在这里,我们首先探讨仅基于两个数据集的多变量统计可以推断出多少关于转换的信息。然后,我们针对常规和高光谱应用分别求解了特定的应用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data association for fusion in spatial and spectral imaging
Conventional spatial imaging of the same object at different times or with different sensing modalities often requires the identification of corresponding points within a solid object. A mathematically similar problem occurs in the remote hyperspectral imaging of one scene at two widely separated time intervals. In both cases the information can be interpreted using linear vector spaces, and the differences in sensed signals can be modeled with linear transformations of these spaces. Here we explore first, how much can be deduced about the transformations based solely on the multivariate statistics of the two data sets. Then we solve application-specific models for each of conventional and hyperspectral applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum image processing (QuIP) Dual band (MWIR/LWIR) hyperspectral imager Fusion techniques for automatic target recognition Perspectives on the fusion of image and non-image data Eigenviews for object recognition in multispectral imaging systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1