{"title":"非洲爪蟾核糖体蛋白基因表达的翻译调控。","authors":"F Amaldi, P Pierandrei-Amaldi","doi":"10.1159/000468750","DOIUrl":null,"url":null,"abstract":"<p><p>The mRNAs coding for ribosomal proteins (rp-mRNA) are subjected to translational control during Xenopus oogenesis and embryogenesis, and also during nutritional changes in Xenopus cultured cells. This regulation, which appears to respond to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA engaged on polysomes, each translated rp-mRNA molecule always remaining fully loaded with ribosomes. All rp-mRNAs analyzed up to now show this translational behavior, and also share some structural features in their untranslated portions. In particular they all have rather short 5' untranslated regions, similar to each other, and always start at the very 5' end with a stretch of several pyrimidines. Fusion to a reporter-coding sequence of the 5' untranslated region of r-protein S19 has shown that this is involved in the translational regulation.</p>","PeriodicalId":11933,"journal":{"name":"Enzyme","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000468750","citationCount":"30","resultStr":"{\"title\":\"Translational regulation of the expression of ribosomal protein genes in Xenopus laevis.\",\"authors\":\"F Amaldi, P Pierandrei-Amaldi\",\"doi\":\"10.1159/000468750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mRNAs coding for ribosomal proteins (rp-mRNA) are subjected to translational control during Xenopus oogenesis and embryogenesis, and also during nutritional changes in Xenopus cultured cells. This regulation, which appears to respond to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA engaged on polysomes, each translated rp-mRNA molecule always remaining fully loaded with ribosomes. All rp-mRNAs analyzed up to now show this translational behavior, and also share some structural features in their untranslated portions. In particular they all have rather short 5' untranslated regions, similar to each other, and always start at the very 5' end with a stretch of several pyrimidines. Fusion to a reporter-coding sequence of the 5' untranslated region of r-protein S19 has shown that this is involved in the translational regulation.</p>\",\"PeriodicalId\":11933,\"journal\":{\"name\":\"Enzyme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000468750\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000468750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000468750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Translational regulation of the expression of ribosomal protein genes in Xenopus laevis.
The mRNAs coding for ribosomal proteins (rp-mRNA) are subjected to translational control during Xenopus oogenesis and embryogenesis, and also during nutritional changes in Xenopus cultured cells. This regulation, which appears to respond to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA engaged on polysomes, each translated rp-mRNA molecule always remaining fully loaded with ribosomes. All rp-mRNAs analyzed up to now show this translational behavior, and also share some structural features in their untranslated portions. In particular they all have rather short 5' untranslated regions, similar to each other, and always start at the very 5' end with a stretch of several pyrimidines. Fusion to a reporter-coding sequence of the 5' untranslated region of r-protein S19 has shown that this is involved in the translational regulation.