场景感知数据流图的参数吞吐量分析

M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, H. Corporaal
{"title":"场景感知数据流图的参数吞吐量分析","authors":"M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, H. Corporaal","doi":"10.1109/ICCD.2012.6378644","DOIUrl":null,"url":null,"abstract":"Scenario-aware dataflow graphs (SADFs) efficiently model dynamic applications. The throughput of an application is an important metric to determine the performance of the system. For example, the number of frames per second output by a video decoder should always stay above a threshold that determines the quality of the system. During design-space exploration (DSE) or run-time management (RTM), numerous throughput calculations have to be performed. Throughput calculations have to be performed as fast as possible. For synchronous dataflow graphs (SDFs), a technique exists that extracts throughput expressions from a parameterized SDF in which the execution time of the tasks (actors) is a function of some parameters. Evaluation of these expressions can be done in a negligible amount of time and provides the throughput for a specific set of parameter values. This technique is not applicable to SADFs. In this paper, we present a technique, based on Max-Plus automata, that finds throughput expressions for a parameterized SADF. Experimental evaluation shows that our technique can be applied to realistic applications. These results also show that our technique is better scalable and faster compared to the available parametric throughput analysis technique for SDFs.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Parametric throughput analysis of scenario-aware dataflow graphs\",\"authors\":\"M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, H. Corporaal\",\"doi\":\"10.1109/ICCD.2012.6378644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scenario-aware dataflow graphs (SADFs) efficiently model dynamic applications. The throughput of an application is an important metric to determine the performance of the system. For example, the number of frames per second output by a video decoder should always stay above a threshold that determines the quality of the system. During design-space exploration (DSE) or run-time management (RTM), numerous throughput calculations have to be performed. Throughput calculations have to be performed as fast as possible. For synchronous dataflow graphs (SDFs), a technique exists that extracts throughput expressions from a parameterized SDF in which the execution time of the tasks (actors) is a function of some parameters. Evaluation of these expressions can be done in a negligible amount of time and provides the throughput for a specific set of parameter values. This technique is not applicable to SADFs. In this paper, we present a technique, based on Max-Plus automata, that finds throughput expressions for a parameterized SADF. Experimental evaluation shows that our technique can be applied to realistic applications. These results also show that our technique is better scalable and faster compared to the available parametric throughput analysis technique for SDFs.\",\"PeriodicalId\":313428,\"journal\":{\"name\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2012.6378644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

场景感知数据流图(sadf)有效地为动态应用程序建模。应用程序的吞吐量是确定系统性能的重要指标。例如,视频解码器每秒输出的帧数应该始终保持在决定系统质量的阈值之上。在设计空间探索(DSE)或运行时管理(RTM)期间,必须执行大量吞吐量计算。必须尽可能快地执行吞吐量计算。对于同步数据流图(SDF),有一种技术可以从参数化的SDF中提取吞吐量表达式,其中任务(参与者)的执行时间是某些参数的函数。这些表达式的求值可以在可忽略不计的时间内完成,并为一组特定参数值提供吞吐量。这种技术不适用于sadf。在本文中,我们提出了一种基于Max-Plus自动机的技术,该技术可以找到参数化SADF的吞吐量表达式。实验结果表明,该技术可用于实际应用。这些结果还表明,与现有的sdf参数吞吐量分析技术相比,我们的技术具有更好的可扩展性和更快的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametric throughput analysis of scenario-aware dataflow graphs
Scenario-aware dataflow graphs (SADFs) efficiently model dynamic applications. The throughput of an application is an important metric to determine the performance of the system. For example, the number of frames per second output by a video decoder should always stay above a threshold that determines the quality of the system. During design-space exploration (DSE) or run-time management (RTM), numerous throughput calculations have to be performed. Throughput calculations have to be performed as fast as possible. For synchronous dataflow graphs (SDFs), a technique exists that extracts throughput expressions from a parameterized SDF in which the execution time of the tasks (actors) is a function of some parameters. Evaluation of these expressions can be done in a negligible amount of time and provides the throughput for a specific set of parameter values. This technique is not applicable to SADFs. In this paper, we present a technique, based on Max-Plus automata, that finds throughput expressions for a parameterized SADF. Experimental evaluation shows that our technique can be applied to realistic applications. These results also show that our technique is better scalable and faster compared to the available parametric throughput analysis technique for SDFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oblivious routing design for mesh networks to achieve a new worst-case throughput bound WaveSync: A low-latency source synchronous bypass network-on-chip architecture Integration of correct-by-construction BIP models into the MetroII design space exploration flow Dynamic phase-based tuning for embedded systems using phase distance mapping A comparative study of wearout mechanisms in state-of-art microprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1