回顾了期权定价的最小二乘方法

M. Klimek, Marcin Pitera
{"title":"回顾了期权定价的最小二乘方法","authors":"M. Klimek, Marcin Pitera","doi":"10.4064/AM2354-2-2018","DOIUrl":null,"url":null,"abstract":"It is shown that the the popular least squares method of option pricing converges even under very general assumptions. This substantially increases the freedom of creating different implementations of the method, with varying levels of computational complexity and flexible approach to regression. It is also argued that in many practical applications even modest non-linear extensions of standard regression may produce satisfactory results. This claim is illustrated with examples.","PeriodicalId":197400,"journal":{"name":"arXiv: Computational Finance","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The least squares method for option pricing revisited\",\"authors\":\"M. Klimek, Marcin Pitera\",\"doi\":\"10.4064/AM2354-2-2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the the popular least squares method of option pricing converges even under very general assumptions. This substantially increases the freedom of creating different implementations of the method, with varying levels of computational complexity and flexible approach to regression. It is also argued that in many practical applications even modest non-linear extensions of standard regression may produce satisfactory results. This claim is illustrated with examples.\",\"PeriodicalId\":197400,\"journal\":{\"name\":\"arXiv: Computational Finance\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AM2354-2-2018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2354-2-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

证明了即使在非常一般的假设条件下,常用的期权定价最小二乘方法也是收敛的。这大大增加了创建方法的不同实现的自由度,具有不同级别的计算复杂性和灵活的回归方法。也有人认为,在许多实际应用中,即使是标准回归的适度非线性扩展也可能产生令人满意的结果。这一说法是用例子来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The least squares method for option pricing revisited
It is shown that the the popular least squares method of option pricing converges even under very general assumptions. This substantially increases the freedom of creating different implementations of the method, with varying levels of computational complexity and flexible approach to regression. It is also argued that in many practical applications even modest non-linear extensions of standard regression may produce satisfactory results. This claim is illustrated with examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BOUNDS ON MULTI-ASSET DERIVATIVES VIA NEURAL NETWORKS Compact Finite Difference Method for Pricing European and American Options Under Jump-Diffusion Models Numerical analysis on quadratic hedging strategies for normal inverse Gaussian models Part 1: Training Sets & ASG Transforms Feedback effect between Volatility of capital flows and financial stability: evidence from Democratic Republic of Congo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1