[Au, Ag, Cu和Ga混合物在金属烧结冠中的形成相和各种性能]。

T Yoshida, T Miyasaka, H Okamura, Y Mizutani, M Hanaka, S Miyake, I Seo, M Ito
{"title":"[Au, Ag, Cu和Ga混合物在金属烧结冠中的形成相和各种性能]。","authors":"T Yoshida,&nbsp;T Miyasaka,&nbsp;H Okamura,&nbsp;Y Mizutani,&nbsp;M Hanaka,&nbsp;S Miyake,&nbsp;I Seo,&nbsp;M Ito","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A new time-saving method has been developed to produce artificial crowns without using the casting process. Plastic mixtures of gallium and other metal particles are kneaded into desired shape and then heated for hardening. By this method, the time required for hardening and producing restorative materials has been shortened greatly. In the present experiment, gallium was triturated with powdered gold, silver and copper to make binary alloy samples. The dimensional change was measured between heat treatment. After heat treatment, the test piece was examined for compressive strength, compressive shrinkage, hardness, tarnishing and difference in phase. Non-heated and heated alloy specimens (Au-Ga, Ag-Ga, Cu-Ga) expanded to form the new phase. The ability of Au-Ga samples to bear compressive strength, when heated at 300 degrees C or more (AuGa2----AuGa), became 2.6 times greater than that of non-heat-treated specimens. The compressive strength of Ag-Ga samples dropped briefly at 350 degrees C (Ag0.72Ga0.28----Ag3Ga) but increased at 450 degrees C (Ag3Ga----AgGa). The strength of Cu-Ga pieces fell by half at 475 degrees C and upward (CuGa2----unknown phase). A compression test showed that the contraction percentage of Au and Ag specimens became large as a result of heat treatment, while that of Cu alloys remained almost unchanged. The results of a hardness test (HV) were comparable to those of the compressive strength test. The Au-Ga alloys increased in hardness after high-temperature treatment. In the Ag-Ga alloys, hardness declined at 350 degrees C and increased at 450 degrees C. There was no difference in hardness between Cu specimens after heat treatment and those allowed to stand at room temperature. A tarnishing test revealed that Au-Ga samples turned slightly yellowish. In the case of Ag-Ga samples, the reflectivity Y (%) dipped slightly but discoloration was not recognizable. However, the Cu-Ga samples which were heated at temperatures of up to 280 degrees C showed a slight drop in reflectivity, but those heated at temperatures higher than 280 degrees C decreased to 50-66% in reflectivity and turned black.</p>","PeriodicalId":77622,"journal":{"name":"Shika zairyo, kikai = Journal of the Japanese Society for Dental Materials and Devices","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The forming phase and various properties of Au, Ag, Cu and Ga mixture in metal fired crowns].\",\"authors\":\"T Yoshida,&nbsp;T Miyasaka,&nbsp;H Okamura,&nbsp;Y Mizutani,&nbsp;M Hanaka,&nbsp;S Miyake,&nbsp;I Seo,&nbsp;M Ito\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new time-saving method has been developed to produce artificial crowns without using the casting process. Plastic mixtures of gallium and other metal particles are kneaded into desired shape and then heated for hardening. By this method, the time required for hardening and producing restorative materials has been shortened greatly. In the present experiment, gallium was triturated with powdered gold, silver and copper to make binary alloy samples. The dimensional change was measured between heat treatment. After heat treatment, the test piece was examined for compressive strength, compressive shrinkage, hardness, tarnishing and difference in phase. Non-heated and heated alloy specimens (Au-Ga, Ag-Ga, Cu-Ga) expanded to form the new phase. The ability of Au-Ga samples to bear compressive strength, when heated at 300 degrees C or more (AuGa2----AuGa), became 2.6 times greater than that of non-heat-treated specimens. The compressive strength of Ag-Ga samples dropped briefly at 350 degrees C (Ag0.72Ga0.28----Ag3Ga) but increased at 450 degrees C (Ag3Ga----AgGa). The strength of Cu-Ga pieces fell by half at 475 degrees C and upward (CuGa2----unknown phase). A compression test showed that the contraction percentage of Au and Ag specimens became large as a result of heat treatment, while that of Cu alloys remained almost unchanged. The results of a hardness test (HV) were comparable to those of the compressive strength test. The Au-Ga alloys increased in hardness after high-temperature treatment. In the Ag-Ga alloys, hardness declined at 350 degrees C and increased at 450 degrees C. There was no difference in hardness between Cu specimens after heat treatment and those allowed to stand at room temperature. A tarnishing test revealed that Au-Ga samples turned slightly yellowish. In the case of Ag-Ga samples, the reflectivity Y (%) dipped slightly but discoloration was not recognizable. However, the Cu-Ga samples which were heated at temperatures of up to 280 degrees C showed a slight drop in reflectivity, but those heated at temperatures higher than 280 degrees C decreased to 50-66% in reflectivity and turned black.</p>\",\"PeriodicalId\":77622,\"journal\":{\"name\":\"Shika zairyo, kikai = Journal of the Japanese Society for Dental Materials and Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shika zairyo, kikai = Journal of the Japanese Society for Dental Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shika zairyo, kikai = Journal of the Japanese Society for Dental Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种不采用铸造工艺生产人工牙冠的省时方法。镓和其他金属颗粒的塑料混合物被揉成所需的形状,然后加热硬化。通过这种方法,大大缩短了硬化和生产修复材料所需的时间。在本实验中,镓与金、银、铜粉末混合制成二元合金样品。测量了热处理前后的尺寸变化。热处理后对试样进行抗压强度、压缩收缩率、硬度、光泽度、相差等检测。未加热和加热合金试样(Au-Ga, Ag-Ga, Cu-Ga)膨胀形成新相。当在300℃或更高温度下加热时,Au-Ga样品承受抗压强度的能力(AuGa2----AuGa)比未热处理的样品高2.6倍。Ag-Ga样品的抗压强度在350℃时短暂下降(Ag0.72Ga0.28----Ag3Ga),但在450℃时升高(Ag3Ga----AgGa)。Cu-Ga片的强度在475℃及以上(CuGa2----未知相)时下降了一半。压缩试验表明,热处理后Au和Ag试样的收缩率变大,而Cu合金的收缩率基本保持不变。硬度试验(HV)的结果与抗压强度试验的结果相当。经高温处理后,Au-Ga合金的硬度有所提高。Ag-Ga合金的硬度在350℃时下降,在450℃时升高,热处理后的Cu试样硬度与室温下的Cu试样硬度无差异。一项褪色测试显示,Au-Ga样品变得略带黄色。Ag-Ga样品的反射率Y(%)略有下降,但变色不明显。然而,Cu-Ga样品在高达280℃的温度下加热时,反射率略有下降,而在高于280℃的温度下加热时,反射率下降到50-66%,并变黑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[The forming phase and various properties of Au, Ag, Cu and Ga mixture in metal fired crowns].

A new time-saving method has been developed to produce artificial crowns without using the casting process. Plastic mixtures of gallium and other metal particles are kneaded into desired shape and then heated for hardening. By this method, the time required for hardening and producing restorative materials has been shortened greatly. In the present experiment, gallium was triturated with powdered gold, silver and copper to make binary alloy samples. The dimensional change was measured between heat treatment. After heat treatment, the test piece was examined for compressive strength, compressive shrinkage, hardness, tarnishing and difference in phase. Non-heated and heated alloy specimens (Au-Ga, Ag-Ga, Cu-Ga) expanded to form the new phase. The ability of Au-Ga samples to bear compressive strength, when heated at 300 degrees C or more (AuGa2----AuGa), became 2.6 times greater than that of non-heat-treated specimens. The compressive strength of Ag-Ga samples dropped briefly at 350 degrees C (Ag0.72Ga0.28----Ag3Ga) but increased at 450 degrees C (Ag3Ga----AgGa). The strength of Cu-Ga pieces fell by half at 475 degrees C and upward (CuGa2----unknown phase). A compression test showed that the contraction percentage of Au and Ag specimens became large as a result of heat treatment, while that of Cu alloys remained almost unchanged. The results of a hardness test (HV) were comparable to those of the compressive strength test. The Au-Ga alloys increased in hardness after high-temperature treatment. In the Ag-Ga alloys, hardness declined at 350 degrees C and increased at 450 degrees C. There was no difference in hardness between Cu specimens after heat treatment and those allowed to stand at room temperature. A tarnishing test revealed that Au-Ga samples turned slightly yellowish. In the case of Ag-Ga samples, the reflectivity Y (%) dipped slightly but discoloration was not recognizable. However, the Cu-Ga samples which were heated at temperatures of up to 280 degrees C showed a slight drop in reflectivity, but those heated at temperatures higher than 280 degrees C decreased to 50-66% in reflectivity and turned black.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
α-TCP/Te-CPセメントの覆髄剤への応用 Tarnish Resistance of Experimental Ti–Ag Alloys in 0.1% Na2S Solution Influence of surface finish methods on color and gloss of dental porcelains Chitosan/BSA micropatterns on Titanium Surfaces by Functionization and Soft Lithography ビニルエステル/ポリマー系軟性樹脂組成物 (第10報) - VE/PEMA系混和物の理論的硬化時間に及ぼすVEの分子構造の影響 -
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1