Erind Ujkani, J. Dybedal, Atle Aalerud, Knut B. Kaldestad, G. Hovland
{"title":"大型多传感器工业机器人单元的视觉标记引导点云配准","authors":"Erind Ujkani, J. Dybedal, Atle Aalerud, Knut B. Kaldestad, G. Hovland","doi":"10.1109/MESA.2018.8449195","DOIUrl":null,"url":null,"abstract":"This paper presents a benchmark and accuracy analysis of 3D sensor calibration in a large industrial robot cell. The sensors used were the Kinect v2 which contains both an RGB and an IR camera measuring depth based on the time-of-flight principle. The approach taken was based on a novel procedure combining Aruco visual markers, methods using region of interest and iterative closest point. The calibration of sensors is performed pairwise, exploiting the fact that time-of-flight sensors can have some overlap in the generated point cloud data. For a volume measuring 10m × 14m × 5m a typical accuracy of the generated point cloud data of 5–10cm was achieved using six sensor nodes.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Visual Marker Guided Point Cloud Registration in a Large Multi-Sensor Industrial Robot Cell\",\"authors\":\"Erind Ujkani, J. Dybedal, Atle Aalerud, Knut B. Kaldestad, G. Hovland\",\"doi\":\"10.1109/MESA.2018.8449195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a benchmark and accuracy analysis of 3D sensor calibration in a large industrial robot cell. The sensors used were the Kinect v2 which contains both an RGB and an IR camera measuring depth based on the time-of-flight principle. The approach taken was based on a novel procedure combining Aruco visual markers, methods using region of interest and iterative closest point. The calibration of sensors is performed pairwise, exploiting the fact that time-of-flight sensors can have some overlap in the generated point cloud data. For a volume measuring 10m × 14m × 5m a typical accuracy of the generated point cloud data of 5–10cm was achieved using six sensor nodes.\",\"PeriodicalId\":138936,\"journal\":{\"name\":\"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MESA.2018.8449195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual Marker Guided Point Cloud Registration in a Large Multi-Sensor Industrial Robot Cell
This paper presents a benchmark and accuracy analysis of 3D sensor calibration in a large industrial robot cell. The sensors used were the Kinect v2 which contains both an RGB and an IR camera measuring depth based on the time-of-flight principle. The approach taken was based on a novel procedure combining Aruco visual markers, methods using region of interest and iterative closest point. The calibration of sensors is performed pairwise, exploiting the fact that time-of-flight sensors can have some overlap in the generated point cloud data. For a volume measuring 10m × 14m × 5m a typical accuracy of the generated point cloud data of 5–10cm was achieved using six sensor nodes.