N. Bakalos, I. Rallis, N. Doulamis, A. Doulamis, A. Voulodimos, Eftychios E. Protopapadakis
{"title":"用于舞蹈建模的自适应卷积增强双向Lstm网络","authors":"N. Bakalos, I. Rallis, N. Doulamis, A. Doulamis, A. Voulodimos, Eftychios E. Protopapadakis","doi":"10.1109/ICIP40778.2020.9191307","DOIUrl":null,"url":null,"abstract":"In this paper, we present a deep learning scheme for classification of choreographic primitives from RGB images. The proposed framework combines the representational power of feature maps, extracted by Convolutional Neural Networks, with the long-term dependency modeling capabilities of Long Short-Term Memory recurrent neural networks. In addition, it uses AutoRegressive and Moving Average (ARMA) filter into the convolutionally enriched LSTM filter to face dance dynamic characteristics. Finally, an adaptive weight updating strategy is introduced for improving classification modeling performance The framework is used for the recognition of dance primitives (basic dance postures) and is experimentally validated with real-world sequences of traditional Greek folk dances.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"48 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Convolutionally Enchanced Bi-Directional Lstm Networks For Choreographic Modeling\",\"authors\":\"N. Bakalos, I. Rallis, N. Doulamis, A. Doulamis, A. Voulodimos, Eftychios E. Protopapadakis\",\"doi\":\"10.1109/ICIP40778.2020.9191307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a deep learning scheme for classification of choreographic primitives from RGB images. The proposed framework combines the representational power of feature maps, extracted by Convolutional Neural Networks, with the long-term dependency modeling capabilities of Long Short-Term Memory recurrent neural networks. In addition, it uses AutoRegressive and Moving Average (ARMA) filter into the convolutionally enriched LSTM filter to face dance dynamic characteristics. Finally, an adaptive weight updating strategy is introduced for improving classification modeling performance The framework is used for the recognition of dance primitives (basic dance postures) and is experimentally validated with real-world sequences of traditional Greek folk dances.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"48 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Convolutionally Enchanced Bi-Directional Lstm Networks For Choreographic Modeling
In this paper, we present a deep learning scheme for classification of choreographic primitives from RGB images. The proposed framework combines the representational power of feature maps, extracted by Convolutional Neural Networks, with the long-term dependency modeling capabilities of Long Short-Term Memory recurrent neural networks. In addition, it uses AutoRegressive and Moving Average (ARMA) filter into the convolutionally enriched LSTM filter to face dance dynamic characteristics. Finally, an adaptive weight updating strategy is introduced for improving classification modeling performance The framework is used for the recognition of dance primitives (basic dance postures) and is experimentally validated with real-world sequences of traditional Greek folk dances.