用于舞蹈建模的自适应卷积增强双向Lstm网络

N. Bakalos, I. Rallis, N. Doulamis, A. Doulamis, A. Voulodimos, Eftychios E. Protopapadakis
{"title":"用于舞蹈建模的自适应卷积增强双向Lstm网络","authors":"N. Bakalos, I. Rallis, N. Doulamis, A. Doulamis, A. Voulodimos, Eftychios E. Protopapadakis","doi":"10.1109/ICIP40778.2020.9191307","DOIUrl":null,"url":null,"abstract":"In this paper, we present a deep learning scheme for classification of choreographic primitives from RGB images. The proposed framework combines the representational power of feature maps, extracted by Convolutional Neural Networks, with the long-term dependency modeling capabilities of Long Short-Term Memory recurrent neural networks. In addition, it uses AutoRegressive and Moving Average (ARMA) filter into the convolutionally enriched LSTM filter to face dance dynamic characteristics. Finally, an adaptive weight updating strategy is introduced for improving classification modeling performance The framework is used for the recognition of dance primitives (basic dance postures) and is experimentally validated with real-world sequences of traditional Greek folk dances.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"48 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Convolutionally Enchanced Bi-Directional Lstm Networks For Choreographic Modeling\",\"authors\":\"N. Bakalos, I. Rallis, N. Doulamis, A. Doulamis, A. Voulodimos, Eftychios E. Protopapadakis\",\"doi\":\"10.1109/ICIP40778.2020.9191307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a deep learning scheme for classification of choreographic primitives from RGB images. The proposed framework combines the representational power of feature maps, extracted by Convolutional Neural Networks, with the long-term dependency modeling capabilities of Long Short-Term Memory recurrent neural networks. In addition, it uses AutoRegressive and Moving Average (ARMA) filter into the convolutionally enriched LSTM filter to face dance dynamic characteristics. Finally, an adaptive weight updating strategy is introduced for improving classification modeling performance The framework is used for the recognition of dance primitives (basic dance postures) and is experimentally validated with real-world sequences of traditional Greek folk dances.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"48 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种深度学习方案,用于从RGB图像中分类编舞原语。该框架将卷积神经网络提取的特征映射的表示能力与长短期记忆递归神经网络的长期依赖建模能力相结合。此外,在卷积丰富的LSTM滤波器中使用自回归和移动平均(ARMA)滤波器来获取人脸舞蹈的动态特征。最后,引入自适应权值更新策略,提高分类建模性能。该框架用于舞蹈原语(基本舞蹈姿势)的识别,并通过希腊传统民间舞蹈的真实序列进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Convolutionally Enchanced Bi-Directional Lstm Networks For Choreographic Modeling
In this paper, we present a deep learning scheme for classification of choreographic primitives from RGB images. The proposed framework combines the representational power of feature maps, extracted by Convolutional Neural Networks, with the long-term dependency modeling capabilities of Long Short-Term Memory recurrent neural networks. In addition, it uses AutoRegressive and Moving Average (ARMA) filter into the convolutionally enriched LSTM filter to face dance dynamic characteristics. Finally, an adaptive weight updating strategy is introduced for improving classification modeling performance The framework is used for the recognition of dance primitives (basic dance postures) and is experimentally validated with real-world sequences of traditional Greek folk dances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1