多变量神经网络解耦控制系统研究

Weimin Yang, Dongmei Lv
{"title":"多变量神经网络解耦控制系统研究","authors":"Weimin Yang, Dongmei Lv","doi":"10.1109/ISDA.2006.33","DOIUrl":null,"url":null,"abstract":"Based on the principle of decoupling and neural-network, this paper extends the single-loop single neural control system to multivariable case of the temperature-liquid level two-variable interacting control system in the front box of the pressure net of the papermaking machine. By incorporating static feed-forward decoupling compensation, a learning-type decentralize multivariable control system has been proposed. With a parameter tuning algorithm, the nonlinear single neural controller (SNC) in each loop is able to control a changing process by merely observing the process output error in the loop. The only a priori plant information is the process steady state gain, which can be easily obtained from open-loop test. Thus, good regulating performance is guaranteed in the initial control stage, even the controlled object varies later. Simulation results show that this strategy is effective and practicable","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Multivariable Neural Network Decoupling Control System\",\"authors\":\"Weimin Yang, Dongmei Lv\",\"doi\":\"10.1109/ISDA.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the principle of decoupling and neural-network, this paper extends the single-loop single neural control system to multivariable case of the temperature-liquid level two-variable interacting control system in the front box of the pressure net of the papermaking machine. By incorporating static feed-forward decoupling compensation, a learning-type decentralize multivariable control system has been proposed. With a parameter tuning algorithm, the nonlinear single neural controller (SNC) in each loop is able to control a changing process by merely observing the process output error in the loop. The only a priori plant information is the process steady state gain, which can be easily obtained from open-loop test. Thus, good regulating performance is guaranteed in the initial control stage, even the controlled object varies later. Simulation results show that this strategy is effective and practicable\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文基于解耦原理和神经网络,将单回路单神经控制系统扩展到造纸机压力网前箱温度-液位双变量交互控制系统的多变量情况。通过引入静态前馈解耦补偿,提出了一种学习型分散多变量控制系统。通过参数整定算法,每个回路中的非线性单神经控制器(SNC)仅通过观察回路中的过程输出误差就能控制变化过程。唯一的先验对象信息是过程稳态增益,它可以很容易地从开环试验中获得。因此,在初始控制阶段,即使被控对象在后期发生变化,也能保证良好的调节性能。仿真结果表明了该策略的有效性和实用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Multivariable Neural Network Decoupling Control System
Based on the principle of decoupling and neural-network, this paper extends the single-loop single neural control system to multivariable case of the temperature-liquid level two-variable interacting control system in the front box of the pressure net of the papermaking machine. By incorporating static feed-forward decoupling compensation, a learning-type decentralize multivariable control system has been proposed. With a parameter tuning algorithm, the nonlinear single neural controller (SNC) in each loop is able to control a changing process by merely observing the process output error in the loop. The only a priori plant information is the process steady state gain, which can be easily obtained from open-loop test. Thus, good regulating performance is guaranteed in the initial control stage, even the controlled object varies later. Simulation results show that this strategy is effective and practicable
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1