{"title":"密集型企业无线局域网的节能潜力评估","authors":"F. Ganji, L. Budzisz, A. Wolisz","doi":"10.1109/PIMRC.2013.6666630","DOIUrl":null,"url":null,"abstract":"Due to the requirements to provision a proper Quality of Service level in enterprise WLANs supporting both voice and data services the typical densities in the deployment of access points (APs) may exceed 4000 APs per square kilometer. While such density is necessary under heavy traffic conditions, it is obviously superfluous during the time of lower load- and dramatically excessive at night periods, with only marginal traffic intensity. We present a novel, aggressive approach for adjusting the AP density to the actual traffic conditions. In the limiting case of a very low traffic, we postulate keeping operational only a skeleton deployment, sufficient just to recognize that there is a station attempting an association. In this case additional APs can be powered up, in order to assure the requested connectivity, locally in this area. Using data from commercially available APs we estimate the potential of power saving in such an operation mode and relate it to the best approaches proposed so far.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"57 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Assessment of the power saving potential in dense enterprise WLANs\",\"authors\":\"F. Ganji, L. Budzisz, A. Wolisz\",\"doi\":\"10.1109/PIMRC.2013.6666630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the requirements to provision a proper Quality of Service level in enterprise WLANs supporting both voice and data services the typical densities in the deployment of access points (APs) may exceed 4000 APs per square kilometer. While such density is necessary under heavy traffic conditions, it is obviously superfluous during the time of lower load- and dramatically excessive at night periods, with only marginal traffic intensity. We present a novel, aggressive approach for adjusting the AP density to the actual traffic conditions. In the limiting case of a very low traffic, we postulate keeping operational only a skeleton deployment, sufficient just to recognize that there is a station attempting an association. In this case additional APs can be powered up, in order to assure the requested connectivity, locally in this area. Using data from commercially available APs we estimate the potential of power saving in such an operation mode and relate it to the best approaches proposed so far.\",\"PeriodicalId\":210993,\"journal\":{\"name\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"57 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2013.6666630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of the power saving potential in dense enterprise WLANs
Due to the requirements to provision a proper Quality of Service level in enterprise WLANs supporting both voice and data services the typical densities in the deployment of access points (APs) may exceed 4000 APs per square kilometer. While such density is necessary under heavy traffic conditions, it is obviously superfluous during the time of lower load- and dramatically excessive at night periods, with only marginal traffic intensity. We present a novel, aggressive approach for adjusting the AP density to the actual traffic conditions. In the limiting case of a very low traffic, we postulate keeping operational only a skeleton deployment, sufficient just to recognize that there is a station attempting an association. In this case additional APs can be powered up, in order to assure the requested connectivity, locally in this area. Using data from commercially available APs we estimate the potential of power saving in such an operation mode and relate it to the best approaches proposed so far.