面向qos驱动的多维内容流优化

Yassin Alkhalili, Jannis Weil, Anam Tahir, Tobias Meuser, B. Koldehofe, A. Mauthe, H. Koeppl, R. Steinmetz
{"title":"面向qos驱动的多维内容流优化","authors":"Yassin Alkhalili, Jannis Weil, Anam Tahir, Tobias Meuser, B. Koldehofe, A. Mauthe, H. Koeppl, R. Steinmetz","doi":"10.14279/TUJ.ECEASST.80.1167","DOIUrl":null,"url":null,"abstract":"Whereas adaptive video streaming for 2D video is well established and frequently used in streaming services, adaptation for emerging higher-dimensional content, such as point clouds, is still a research issue. Moreover, how to optimize resource usage in streaming services that support multiple content types of different dimensions and levels of interactivity has so far not been sufficiently studied. Learning-based approaches aim to optimize the streaming experience according to user needs. They predict quality metrics and try to find system parameters maximizing them given the current network conditions. With this paper, we show how to approach content and network adaption driven by Quality of Experience (QoE) for multi-dimensional content. We describe components required to create a system adapting multiple streams of different content types simultaneously, identify research gaps and propose potential next steps.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards QoE-Driven Optimization of Multi-Dimensional Content Streaming\",\"authors\":\"Yassin Alkhalili, Jannis Weil, Anam Tahir, Tobias Meuser, B. Koldehofe, A. Mauthe, H. Koeppl, R. Steinmetz\",\"doi\":\"10.14279/TUJ.ECEASST.80.1167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whereas adaptive video streaming for 2D video is well established and frequently used in streaming services, adaptation for emerging higher-dimensional content, such as point clouds, is still a research issue. Moreover, how to optimize resource usage in streaming services that support multiple content types of different dimensions and levels of interactivity has so far not been sufficiently studied. Learning-based approaches aim to optimize the streaming experience according to user needs. They predict quality metrics and try to find system parameters maximizing them given the current network conditions. With this paper, we show how to approach content and network adaption driven by Quality of Experience (QoE) for multi-dimensional content. We describe components required to create a system adapting multiple streams of different content types simultaneously, identify research gaps and propose potential next steps.\",\"PeriodicalId\":115235,\"journal\":{\"name\":\"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14279/TUJ.ECEASST.80.1167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/TUJ.ECEASST.80.1167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虽然2D视频的自适应视频流已经很好地建立并经常用于流媒体服务,但对新兴的高维内容(如点云)的自适应仍然是一个研究问题。此外,如何优化流媒体服务中支持不同维度和交互级别的多种内容类型的资源使用,目前还没有得到充分的研究。基于学习的方法旨在根据用户需求优化流媒体体验。他们预测质量指标,并试图找到系统参数最大化给定当前网络条件。在本文中,我们展示了如何处理由多维内容的体验质量(QoE)驱动的内容和网络适应。我们描述了创建一个同时适应多种不同内容类型流的系统所需的组件,确定研究差距并提出潜在的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards QoE-Driven Optimization of Multi-Dimensional Content Streaming
Whereas adaptive video streaming for 2D video is well established and frequently used in streaming services, adaptation for emerging higher-dimensional content, such as point clouds, is still a research issue. Moreover, how to optimize resource usage in streaming services that support multiple content types of different dimensions and levels of interactivity has so far not been sufficiently studied. Learning-based approaches aim to optimize the streaming experience according to user needs. They predict quality metrics and try to find system parameters maximizing them given the current network conditions. With this paper, we show how to approach content and network adaption driven by Quality of Experience (QoE) for multi-dimensional content. We describe components required to create a system adapting multiple streams of different content types simultaneously, identify research gaps and propose potential next steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Management for Multi-Agent Systems Towards SCION-enabled IXPs: The SCION Peering Coordinator Demonstration: A cloud-control system equipped with intrusion detection and mitigation Demo: Traffic Splitting for Tor - A Defense against Fingerprinting Attacks Preface and Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1