{"title":"估算软件项目工作的新计算智能范式","authors":"E. A. El-Sebakhy","doi":"10.1109/WAINA.2008.257","DOIUrl":null,"url":null,"abstract":"Recently, there are numerous techniques have been proposed to forecast and identify the software development effort; such prediction has a prominent impact on the success of software development projects. The most common methods for estimating software development efforts that have been proposed in literature are: line of code (LOC)-based constructive cost model (COCOMO), function point- based regression model (FP), neural network model (NN), and case-based reasoning (CBR). Recent research has tended to focus on the use of function points (FPs) in estimating the software development efforts, however, a precise estimation should not only consider the FPs, which represent the size of the software, but should also include various elements of the development environment for its estimation. Therefore, the main benefit of this study is to design and analyze both function points and development environments of recent software development cases. Therefore, this paper presents a new intelligence paradigm scheme based on functional network to forecast that emphasizes on numerous software development elements. Both implementation and learning process are based on the utilization of functional networks as a new modeling scheme and investigate its efficiency as a software development estimation model for predicting the software development efforts.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"New Computational Intelligence Paradigm for Estimating the Software Project Effort\",\"authors\":\"E. A. El-Sebakhy\",\"doi\":\"10.1109/WAINA.2008.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there are numerous techniques have been proposed to forecast and identify the software development effort; such prediction has a prominent impact on the success of software development projects. The most common methods for estimating software development efforts that have been proposed in literature are: line of code (LOC)-based constructive cost model (COCOMO), function point- based regression model (FP), neural network model (NN), and case-based reasoning (CBR). Recent research has tended to focus on the use of function points (FPs) in estimating the software development efforts, however, a precise estimation should not only consider the FPs, which represent the size of the software, but should also include various elements of the development environment for its estimation. Therefore, the main benefit of this study is to design and analyze both function points and development environments of recent software development cases. Therefore, this paper presents a new intelligence paradigm scheme based on functional network to forecast that emphasizes on numerous software development elements. Both implementation and learning process are based on the utilization of functional networks as a new modeling scheme and investigate its efficiency as a software development estimation model for predicting the software development efforts.\",\"PeriodicalId\":170418,\"journal\":{\"name\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2008.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

最近,已经提出了许多技术来预测和识别软件开发工作;这样的预测对软件开发项目的成功有着显著的影响。在文献中提出的评估软件开发工作的最常见方法是:基于代码行(LOC)的构建成本模型(COCOMO)、基于功能点的回归模型(FP)、神经网络模型(NN)和基于案例的推理(CBR)。最近的研究倾向于关注功能点(FPs)在评估软件开发工作中的使用,然而,一个精确的评估不仅应该考虑FPs,它代表了软件的大小,还应该包括用于评估的开发环境的各种元素。因此,这项研究的主要好处是设计和分析最近的软件开发案例的功能点和开发环境。因此,本文提出了一种新的基于功能网络预测的智能范式方案,该方案强调了多种软件开发要素。将功能网络作为一种新的建模方案,并对其作为预测软件开发工作的软件开发评估模型的效率进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Computational Intelligence Paradigm for Estimating the Software Project Effort
Recently, there are numerous techniques have been proposed to forecast and identify the software development effort; such prediction has a prominent impact on the success of software development projects. The most common methods for estimating software development efforts that have been proposed in literature are: line of code (LOC)-based constructive cost model (COCOMO), function point- based regression model (FP), neural network model (NN), and case-based reasoning (CBR). Recent research has tended to focus on the use of function points (FPs) in estimating the software development efforts, however, a precise estimation should not only consider the FPs, which represent the size of the software, but should also include various elements of the development environment for its estimation. Therefore, the main benefit of this study is to design and analyze both function points and development environments of recent software development cases. Therefore, this paper presents a new intelligence paradigm scheme based on functional network to forecast that emphasizes on numerous software development elements. Both implementation and learning process are based on the utilization of functional networks as a new modeling scheme and investigate its efficiency as a software development estimation model for predicting the software development efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Metadata Generation and its Application to Biological Association Extraction Towards a Usenet-Like Discussion System for Users of Disconnected MANETs A New Centroid-Based Classifier for Text Categorization Explaining Answers from Agent Communication of Semantic Web Information Parallel Computing of CG Using an Open Source Windows Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1