{"title":"基于对话的会话推荐预测用户意图和满意度","authors":"Wanling Cai, L. Chen","doi":"10.1145/3340631.3394856","DOIUrl":null,"url":null,"abstract":"To develop a multi-turn dialogue-based conversational recommender system (DCRS), it is important to predict users' intents behind their utterances and their satisfaction with the recommendation, so as to allow the system to incrementally refine user preference model and adjust its dialogue strategy. However, little work has investigated these issues so far. In this paper, we first contribute with two hierarchical taxonomies for classifying user intents and recommender actions respectively based on grounded theory. We then define various categories of feature considering content, discourse, sentiment, and context to predict users' intents and satisfaction by comparing different machine learning methods. The experimental results for user intent prediction task show that some models (such as XGBoost and SVM) can perform well in predicting user intents, and incorporating context features into the prediction model can significantly boost the performance. Our empirical study also demonstrates that leveraging dialogue behavior features (i.e., including both user intents and recommender actions) can achieve good results in predicting user satisfaction.","PeriodicalId":417607,"journal":{"name":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Predicting User Intents and Satisfaction with Dialogue-based Conversational Recommendations\",\"authors\":\"Wanling Cai, L. Chen\",\"doi\":\"10.1145/3340631.3394856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop a multi-turn dialogue-based conversational recommender system (DCRS), it is important to predict users' intents behind their utterances and their satisfaction with the recommendation, so as to allow the system to incrementally refine user preference model and adjust its dialogue strategy. However, little work has investigated these issues so far. In this paper, we first contribute with two hierarchical taxonomies for classifying user intents and recommender actions respectively based on grounded theory. We then define various categories of feature considering content, discourse, sentiment, and context to predict users' intents and satisfaction by comparing different machine learning methods. The experimental results for user intent prediction task show that some models (such as XGBoost and SVM) can perform well in predicting user intents, and incorporating context features into the prediction model can significantly boost the performance. Our empirical study also demonstrates that leveraging dialogue behavior features (i.e., including both user intents and recommender actions) can achieve good results in predicting user satisfaction.\",\"PeriodicalId\":417607,\"journal\":{\"name\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340631.3394856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340631.3394856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting User Intents and Satisfaction with Dialogue-based Conversational Recommendations
To develop a multi-turn dialogue-based conversational recommender system (DCRS), it is important to predict users' intents behind their utterances and their satisfaction with the recommendation, so as to allow the system to incrementally refine user preference model and adjust its dialogue strategy. However, little work has investigated these issues so far. In this paper, we first contribute with two hierarchical taxonomies for classifying user intents and recommender actions respectively based on grounded theory. We then define various categories of feature considering content, discourse, sentiment, and context to predict users' intents and satisfaction by comparing different machine learning methods. The experimental results for user intent prediction task show that some models (such as XGBoost and SVM) can perform well in predicting user intents, and incorporating context features into the prediction model can significantly boost the performance. Our empirical study also demonstrates that leveraging dialogue behavior features (i.e., including both user intents and recommender actions) can achieve good results in predicting user satisfaction.