{"title":"并行非线性优化","authors":"Ron Daniel","doi":"10.1109/DMCC.1990.555394","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of a parallel Levenberg-Marquardt algorithm on an iPSC/2. The Levenberg-Marquardt algorithm is a standard technique for non-linear least-squares optimization. For a problem with D data points and P parameters to be estimated, each iteration requires that the objective function and its P partials be evaluated at all D data points, using the current parameter estimates. Each iteration also requires the solution of a PxP linear system to obtain the next set of parameter estimates. A simple data-parallel decomposition is used where the data is evenly distributed across the nodes to parallelize the evaluations of the objective function and its partial derivatives. The performance of the method is characterized versus the number of nodes, the number of data points, and the number of parameters in the objective function. Further enhancements are also discussed.","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallel Nonlinear Optimization\",\"authors\":\"Ron Daniel\",\"doi\":\"10.1109/DMCC.1990.555394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the implementation of a parallel Levenberg-Marquardt algorithm on an iPSC/2. The Levenberg-Marquardt algorithm is a standard technique for non-linear least-squares optimization. For a problem with D data points and P parameters to be estimated, each iteration requires that the objective function and its P partials be evaluated at all D data points, using the current parameter estimates. Each iteration also requires the solution of a PxP linear system to obtain the next set of parameter estimates. A simple data-parallel decomposition is used where the data is evenly distributed across the nodes to parallelize the evaluations of the objective function and its partial derivatives. The performance of the method is characterized versus the number of nodes, the number of data points, and the number of parameters in the objective function. Further enhancements are also discussed.\",\"PeriodicalId\":204431,\"journal\":{\"name\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1990.555394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.555394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一种并行Levenberg-Marquardt算法在iPSC/2上的实现。Levenberg-Marquardt算法是非线性最小二乘优化的标准技术。对于一个需要估计D个数据点和P个参数的问题,每次迭代都需要使用当前参数估计在所有D个数据点上评估目标函数及其P个偏值。每次迭代还需要解一个PxP线性系统以获得下一组参数估计。使用简单的数据并行分解,其中数据均匀分布在节点上,以并行化目标函数及其偏导数的评估。该方法的性能与目标函数中节点的数量、数据点的数量和参数的数量有关。还讨论了进一步的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Nonlinear Optimization
This paper describes the implementation of a parallel Levenberg-Marquardt algorithm on an iPSC/2. The Levenberg-Marquardt algorithm is a standard technique for non-linear least-squares optimization. For a problem with D data points and P parameters to be estimated, each iteration requires that the objective function and its P partials be evaluated at all D data points, using the current parameter estimates. Each iteration also requires the solution of a PxP linear system to obtain the next set of parameter estimates. A simple data-parallel decomposition is used where the data is evenly distributed across the nodes to parallelize the evaluations of the objective function and its partial derivatives. The performance of the method is characterized versus the number of nodes, the number of data points, and the number of parameters in the objective function. Further enhancements are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Inner Product Computation in the Parallel One-Sided Jacobi Algorithm Experience with Concurrent Aggregates (CA): Implementation and Programming A Distributed Memory Implementation of SISAL Performance Results on the Intel Touchstone Gamma Prototype Quick Recovery of Embedded Structures in Hypercube Computers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1