基于分层粒子群算法的异构网络使用数据聚类

Shafiq Alam, G. Dobbie, Yun Sing Koh, Patricia J. Riddle
{"title":"基于分层粒子群算法的异构网络使用数据聚类","authors":"Shafiq Alam, G. Dobbie, Yun Sing Koh, Patricia J. Riddle","doi":"10.1109/SIS.2013.6615172","DOIUrl":null,"url":null,"abstract":"Data clustering aims to group data based on similarities between the data elements. Recently, due to the increasing complexity and amount of heterogenous data, modeling of such data for clustering has become a serious challenge. In this paper we tackle the problem of modeling heterogeneous web usage data for clustering. The main contribution is a new similarity measure which we propose to cluster heterogeneous web usage data. We then use this similarity measure in our Particle Swarm Optimization (PSO) based clustering algorithm, Hierarchical Particle Swarm Optimization based clustering (HPSO-clustering). HPSO-clustering combines the qualities of hierarchical and partitional clustering to cluster data in a hierarchical agglomerative manner. We present the clustering results and explain the effects of the new similarity measure on inter-cluster and intra-cluster distances. These measures verify the applicability of the proposed similarity measure on web usage data.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Clustering heterogeneous web usage data using Hierarchical Particle Swarm Optimization\",\"authors\":\"Shafiq Alam, G. Dobbie, Yun Sing Koh, Patricia J. Riddle\",\"doi\":\"10.1109/SIS.2013.6615172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering aims to group data based on similarities between the data elements. Recently, due to the increasing complexity and amount of heterogenous data, modeling of such data for clustering has become a serious challenge. In this paper we tackle the problem of modeling heterogeneous web usage data for clustering. The main contribution is a new similarity measure which we propose to cluster heterogeneous web usage data. We then use this similarity measure in our Particle Swarm Optimization (PSO) based clustering algorithm, Hierarchical Particle Swarm Optimization based clustering (HPSO-clustering). HPSO-clustering combines the qualities of hierarchical and partitional clustering to cluster data in a hierarchical agglomerative manner. We present the clustering results and explain the effects of the new similarity measure on inter-cluster and intra-cluster distances. These measures verify the applicability of the proposed similarity measure on web usage data.\",\"PeriodicalId\":444765,\"journal\":{\"name\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2013.6615172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

数据聚类的目的是根据数据元素之间的相似性对数据进行分组。近年来,由于异构数据的复杂性和数量的不断增加,对此类数据进行建模以进行聚类已经成为一个严峻的挑战。在本文中,我们解决了异构web使用数据的建模问题。主要贡献是我们提出了一种新的相似度度量,用于聚类异构web使用数据。然后,我们将这种相似性度量用于基于粒子群优化(PSO)的聚类算法,即基于分层粒子群优化的聚类(hpso)聚类。hpso聚类结合了分层聚类和分区聚类的特性,以分层聚集的方式对数据进行聚类。我们给出了聚类结果,并解释了新的相似性度量对簇间和簇内距离的影响。这些度量验证了所提出的相似性度量在web使用数据上的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering heterogeneous web usage data using Hierarchical Particle Swarm Optimization
Data clustering aims to group data based on similarities between the data elements. Recently, due to the increasing complexity and amount of heterogenous data, modeling of such data for clustering has become a serious challenge. In this paper we tackle the problem of modeling heterogeneous web usage data for clustering. The main contribution is a new similarity measure which we propose to cluster heterogeneous web usage data. We then use this similarity measure in our Particle Swarm Optimization (PSO) based clustering algorithm, Hierarchical Particle Swarm Optimization based clustering (HPSO-clustering). HPSO-clustering combines the qualities of hierarchical and partitional clustering to cluster data in a hierarchical agglomerative manner. We present the clustering results and explain the effects of the new similarity measure on inter-cluster and intra-cluster distances. These measures verify the applicability of the proposed similarity measure on web usage data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of stagnation behavior of vector evaluated particle swarm optimization Reinforcement learning in swarm-robotics for multi-agent foraging-task domain A novel ACO algorithm for dynamic binary chains based on changes in the system's stability Cooperative particle swarm optimization in dynamic environments Joint energy and spinning reserve dispatch in wind-thermal power system using IDE-SAR technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1