Lixiang Lin, Shenghao Qiu, Ziqi Yu, Liang You, Long Xin, Xiaoyang Sun, J. Xu, Zheng Wang
{"title":"AIACC-Training:通过多流和并发梯度通信优化分布式深度学习训练","authors":"Lixiang Lin, Shenghao Qiu, Ziqi Yu, Liang You, Long Xin, Xiaoyang Sun, J. Xu, Zheng Wang","doi":"10.1109/ICDCS54860.2022.00087","DOIUrl":null,"url":null,"abstract":"There is a growing interest in training deep neural networks (DNNs) in a GPU cloud environment. This is typically achieved by running parallel training workers on multiple GPUs across computing nodes. Under such a setup, the communication overhead is often responsible for long training time and poor scalability. This paper presents AIACC-Training, a unified communication framework designed for the distributed training of DNNs in a GPU cloud environment. AIACC-Training permits a training worker to participate in multiple gradient communication operations simultaneously to improve network bandwidth utilization and reduce communication latency. It employs auto-tuning techniques to dynamically determine the right communication parameters based on the input DNN workloads and the underlying network infrastructure. AIACC-Training has been deployed to production at Alibaba GPU Cloud with 3000+ GPUs executing AIACC-Training optimized code at any time. Experiments performed on representative DNN workloads show that AIACC-Training outperforms existing solutions, improving the training throughput and scalability by a large margin.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"AIACC-Training: Optimizing Distributed Deep Learning Training through Multi-streamed and Concurrent Gradient Communications\",\"authors\":\"Lixiang Lin, Shenghao Qiu, Ziqi Yu, Liang You, Long Xin, Xiaoyang Sun, J. Xu, Zheng Wang\",\"doi\":\"10.1109/ICDCS54860.2022.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing interest in training deep neural networks (DNNs) in a GPU cloud environment. This is typically achieved by running parallel training workers on multiple GPUs across computing nodes. Under such a setup, the communication overhead is often responsible for long training time and poor scalability. This paper presents AIACC-Training, a unified communication framework designed for the distributed training of DNNs in a GPU cloud environment. AIACC-Training permits a training worker to participate in multiple gradient communication operations simultaneously to improve network bandwidth utilization and reduce communication latency. It employs auto-tuning techniques to dynamically determine the right communication parameters based on the input DNN workloads and the underlying network infrastructure. AIACC-Training has been deployed to production at Alibaba GPU Cloud with 3000+ GPUs executing AIACC-Training optimized code at any time. Experiments performed on representative DNN workloads show that AIACC-Training outperforms existing solutions, improving the training throughput and scalability by a large margin.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AIACC-Training: Optimizing Distributed Deep Learning Training through Multi-streamed and Concurrent Gradient Communications
There is a growing interest in training deep neural networks (DNNs) in a GPU cloud environment. This is typically achieved by running parallel training workers on multiple GPUs across computing nodes. Under such a setup, the communication overhead is often responsible for long training time and poor scalability. This paper presents AIACC-Training, a unified communication framework designed for the distributed training of DNNs in a GPU cloud environment. AIACC-Training permits a training worker to participate in multiple gradient communication operations simultaneously to improve network bandwidth utilization and reduce communication latency. It employs auto-tuning techniques to dynamically determine the right communication parameters based on the input DNN workloads and the underlying network infrastructure. AIACC-Training has been deployed to production at Alibaba GPU Cloud with 3000+ GPUs executing AIACC-Training optimized code at any time. Experiments performed on representative DNN workloads show that AIACC-Training outperforms existing solutions, improving the training throughput and scalability by a large margin.