分组感知原语用于目标识别和跟踪

R. Madhavan, Mike Foedisch, Tommy Chang, T. Hong
{"title":"分组感知原语用于目标识别和跟踪","authors":"R. Madhavan, Mike Foedisch, Tommy Chang, T. Hong","doi":"10.1109/AIPR.2005.29","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our recent efforts in grouping sensory data into meaningful entities. Our grouping philosophy is based on perceptual organization principles using gestalt hypotheses where we impose structural regularity on sensory primitives stemming from a common underlying cause. We present results using field data from UGVs and outline the utility of our research in object recognition and tracking for autonomous vehicle navigation. In addition, we show how the grouping efforts can be useful for constructing symbolic topological maps when data from different sensing modalities are fused in a bottom-up and top-down fashion","PeriodicalId":130204,"journal":{"name":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Grouping sensory primitives for object recognition and tracking\",\"authors\":\"R. Madhavan, Mike Foedisch, Tommy Chang, T. Hong\",\"doi\":\"10.1109/AIPR.2005.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe our recent efforts in grouping sensory data into meaningful entities. Our grouping philosophy is based on perceptual organization principles using gestalt hypotheses where we impose structural regularity on sensory primitives stemming from a common underlying cause. We present results using field data from UGVs and outline the utility of our research in object recognition and tracking for autonomous vehicle navigation. In addition, we show how the grouping efforts can be useful for constructing symbolic topological maps when data from different sensing modalities are fused in a bottom-up and top-down fashion\",\"PeriodicalId\":130204,\"journal\":{\"name\":\"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2005.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2005.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们描述了我们最近在将感官数据分组为有意义的实体方面的努力。我们的分组哲学是基于使用格式塔假设的感知组织原则,我们将结构规则强加于源于共同潜在原因的感觉原语。我们使用ugv的现场数据展示了结果,并概述了我们在自动车辆导航的目标识别和跟踪方面的研究的实用性。此外,我们还展示了当来自不同传感模式的数据以自下而上和自上而下的方式融合时,分组工作如何有助于构建符号拓扑地图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grouping sensory primitives for object recognition and tracking
In this paper, we describe our recent efforts in grouping sensory data into meaningful entities. Our grouping philosophy is based on perceptual organization principles using gestalt hypotheses where we impose structural regularity on sensory primitives stemming from a common underlying cause. We present results using field data from UGVs and outline the utility of our research in object recognition and tracking for autonomous vehicle navigation. In addition, we show how the grouping efforts can be useful for constructing symbolic topological maps when data from different sensing modalities are fused in a bottom-up and top-down fashion
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive confidence level assignment to segmented human face regions for improved face recognition Segmentation approach and comparison to hyperspectral object detection algorithms A rate distortion method for waveform design in RF image formation Automatic inspection system using machine vision 3D scene modeling using sensor fusion with laser range finder and image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1