多静态跟踪与场稳定的似然函数分解

R. Streit
{"title":"多静态跟踪与场稳定的似然函数分解","authors":"R. Streit","doi":"10.1109/ICIF.2007.4408040","DOIUrl":null,"url":null,"abstract":"An alternating directions method is presented for joint maximum a posteriori estimation of target track and sensor field using bistatic range data. The algorithm cycles over two sub-algorithms: one improves the target state estimate conditioned on sensor field state, and the other improves the sensor field state estimate conditioned on target state. Nonlinearities in the sub-algorithms are mitigated by decomposing their likelihood functions using integral representations. The kernels of these integrals are linear-Gaussian densities in the states to be estimated, a fact that facilitates the use of missing data methods. The resulting sub-algorithms are equivalent to linear-Gaussian Kalman smoothers. The alternating directions algorithm is guaranteed to converge to (at least) a local maximum of the joint target-field likelihood function.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Likelihood function decomposition for multistatic tracking and field stabilization\",\"authors\":\"R. Streit\",\"doi\":\"10.1109/ICIF.2007.4408040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An alternating directions method is presented for joint maximum a posteriori estimation of target track and sensor field using bistatic range data. The algorithm cycles over two sub-algorithms: one improves the target state estimate conditioned on sensor field state, and the other improves the sensor field state estimate conditioned on target state. Nonlinearities in the sub-algorithms are mitigated by decomposing their likelihood functions using integral representations. The kernels of these integrals are linear-Gaussian densities in the states to be estimated, a fact that facilitates the use of missing data methods. The resulting sub-algorithms are equivalent to linear-Gaussian Kalman smoothers. The alternating directions algorithm is guaranteed to converge to (at least) a local maximum of the joint target-field likelihood function.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用双基地距离数据对目标航迹和传感器场进行联合最大后验估计的交替方向方法。该算法在两个子算法上循环:一个子算法改进了以传感器场状态为条件的目标状态估计,另一个子算法改进了以目标状态为条件的传感器场状态估计。通过使用积分表示分解子算法的似然函数,减轻了子算法的非线性。这些积分的核是待估计状态下的线性高斯密度,这一事实便于使用缺失数据方法。所得子算法等价于线性高斯卡尔曼平滑。交替方向算法保证收敛于(至少)联合目标场似然函数的一个局部最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Likelihood function decomposition for multistatic tracking and field stabilization
An alternating directions method is presented for joint maximum a posteriori estimation of target track and sensor field using bistatic range data. The algorithm cycles over two sub-algorithms: one improves the target state estimate conditioned on sensor field state, and the other improves the sensor field state estimate conditioned on target state. Nonlinearities in the sub-algorithms are mitigated by decomposing their likelihood functions using integral representations. The kernels of these integrals are linear-Gaussian densities in the states to be estimated, a fact that facilitates the use of missing data methods. The resulting sub-algorithms are equivalent to linear-Gaussian Kalman smoothers. The alternating directions algorithm is guaranteed to converge to (at least) a local maximum of the joint target-field likelihood function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-autonomous reference data generation for perception performance evaluation Track association and fusion with heterogeneous local trackers Distributed detection of a nuclear radioactive source using fusion of correlated decisions Distributed data fusion algorithms for tracking a maneuvering target Multi agent systems for flexible and robust Bayesian information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1