一种利用内存取证技术进行高级恶意软件分析的有效方法

Chathuranga Rathnayaka, Aruna Jamdagni
{"title":"一种利用内存取证技术进行高级恶意软件分析的有效方法","authors":"Chathuranga Rathnayaka, Aruna Jamdagni","doi":"10.1109/Trustcom/BigDataSE/ICESS.2017.365","DOIUrl":null,"url":null,"abstract":"Static analysis in malware analysis has been complex due to string searching methods. Forensic investigation of the physical memory or memory forensics provides a comprehensive analysis of malware, checking traces of malware in malware dumps that have been created while running in an operating system. In this study, we propose efficient and robust framework to analyse complex malwares by integrating both static analysis techniques and memory forensic techniques. The proposed framework has evaluated two hundred real malware samples and achieved a 90% detection rate. These results have been compared and verified with the results obtained from www.virustotal.com, which is online malware analysis tool. Additionally, we have identified the sources of many malware samples.","PeriodicalId":170253,"journal":{"name":"2017 IEEE Trustcom/BigDataSE/ICESS","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"An Efficient Approach for Advanced Malware Analysis Using Memory Forensic Technique\",\"authors\":\"Chathuranga Rathnayaka, Aruna Jamdagni\",\"doi\":\"10.1109/Trustcom/BigDataSE/ICESS.2017.365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static analysis in malware analysis has been complex due to string searching methods. Forensic investigation of the physical memory or memory forensics provides a comprehensive analysis of malware, checking traces of malware in malware dumps that have been created while running in an operating system. In this study, we propose efficient and robust framework to analyse complex malwares by integrating both static analysis techniques and memory forensic techniques. The proposed framework has evaluated two hundred real malware samples and achieved a 90% detection rate. These results have been compared and verified with the results obtained from www.virustotal.com, which is online malware analysis tool. Additionally, we have identified the sources of many malware samples.\",\"PeriodicalId\":170253,\"journal\":{\"name\":\"2017 IEEE Trustcom/BigDataSE/ICESS\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Trustcom/BigDataSE/ICESS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Trustcom/BigDataSE/ICESS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

由于字符串搜索方法的存在,静态分析在恶意软件分析中变得非常复杂。物理内存的取证调查或内存取证提供了对恶意软件的全面分析,检查在操作系统中运行时创建的恶意软件转储中的恶意软件痕迹。在本研究中,我们通过集成静态分析技术和内存取证技术,提出了高效且稳健的框架来分析复杂的恶意软件。该框架对200个真实恶意软件样本进行了评估,检测率达到90%。这些结果与在线恶意软件分析工具www.virustotal.com的结果进行了对比和验证。此外,我们已经确定了许多恶意软件样本的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Approach for Advanced Malware Analysis Using Memory Forensic Technique
Static analysis in malware analysis has been complex due to string searching methods. Forensic investigation of the physical memory or memory forensics provides a comprehensive analysis of malware, checking traces of malware in malware dumps that have been created while running in an operating system. In this study, we propose efficient and robust framework to analyse complex malwares by integrating both static analysis techniques and memory forensic techniques. The proposed framework has evaluated two hundred real malware samples and achieved a 90% detection rate. These results have been compared and verified with the results obtained from www.virustotal.com, which is online malware analysis tool. Additionally, we have identified the sources of many malware samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insider Threat Detection Through Attributed Graph Clustering SEEAD: A Semantic-Based Approach for Automatic Binary Code De-obfuscation A Public Key Encryption Scheme for String Identification Vehicle Incident Hot Spots Identification: An Approach for Big Data Implementing Chain of Custody Requirements in Database Audit Records for Forensic Purposes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1