基于分配的单片3D芯片紧密连接路由优化

Suwan Kim, Sehyeon Chung, Taewhan Kim, Heechun Park
{"title":"基于分配的单片3D芯片紧密连接路由优化","authors":"Suwan Kim, Sehyeon Chung, Taewhan Kim, Heechun Park","doi":"10.1145/3531437.3539714","DOIUrl":null,"url":null,"abstract":"Monolithic 3D (M3D) is a revolutionary technology for high-density and high-performance chip design in the post-Moore era. However, it suffers from considerable thermal confinement due to the transistor stacking and insulating materials between the layers. As a way of reducing power, thereby mitigating the thermal problem, we propose a comprehensive physical design methodology that incorporates two new important items, one is blockage aware MIV (monolithic inter-tier via) placement and the other is 3D net ordering for routing, intending to optimize wire length. Precisely, we propose a three-step approach: (1) retrieving the MIV region candidates for each 3D net, (2) fine-tuning placement to secure MIV spots in the presence of blockages, and (3) performing M3D routing with net ordering to consider the fine-tuned placement result. We implement the proposed M3D design flow by utilizing commercial 2D IC EDA tools while providing seamless optimization for cross-tier connections. In the meantime, our experiments confirm that proposed M3D design flow saves wire length per cross-tier net by up to 41.42%, which corresponds to 7.68% less total net switching power, equivalently 36.79% lower energy-delay-product over the conventional state-of-the-art M3D design flow.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tightly Linking 3D Via Allocation Towards Routing Optimization for Monolithic 3D ICs\",\"authors\":\"Suwan Kim, Sehyeon Chung, Taewhan Kim, Heechun Park\",\"doi\":\"10.1145/3531437.3539714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolithic 3D (M3D) is a revolutionary technology for high-density and high-performance chip design in the post-Moore era. However, it suffers from considerable thermal confinement due to the transistor stacking and insulating materials between the layers. As a way of reducing power, thereby mitigating the thermal problem, we propose a comprehensive physical design methodology that incorporates two new important items, one is blockage aware MIV (monolithic inter-tier via) placement and the other is 3D net ordering for routing, intending to optimize wire length. Precisely, we propose a three-step approach: (1) retrieving the MIV region candidates for each 3D net, (2) fine-tuning placement to secure MIV spots in the presence of blockages, and (3) performing M3D routing with net ordering to consider the fine-tuned placement result. We implement the proposed M3D design flow by utilizing commercial 2D IC EDA tools while providing seamless optimization for cross-tier connections. In the meantime, our experiments confirm that proposed M3D design flow saves wire length per cross-tier net by up to 41.42%, which corresponds to 7.68% less total net switching power, equivalently 36.79% lower energy-delay-product over the conventional state-of-the-art M3D design flow.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单片3D (M3D)技术是后摩尔时代高密度、高性能芯片设计的革命性技术。然而,由于晶体管堆叠和层之间的绝缘材料,它受到相当大的热限制。作为一种降低功耗从而缓解热问题的方法,我们提出了一种综合的物理设计方法,其中包含两个新的重要项目,一个是阻塞感知MIV(单片层间通道)放置,另一个是用于路由的3D网络排序,旨在优化导线长度。准确地说,我们提出了一个三步方法:(1)检索每个3D网络的MIV区域候选,(2)微调放置以在存在阻塞的情况下确保MIV点,以及(3)使用网络排序执行M3D路由以考虑微调放置结果。我们利用商业2D集成电路EDA工具实现了M3D设计流程,同时为跨层连接提供了无缝优化。与此同时,我们的实验证实,所提出的M3D设计流程比传统的最先进的M3D设计流程节省了41.42%的跨层网络导线长度,相当于减少了7.68%的总净开关功率,相当于减少了36.79%的能量延迟积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tightly Linking 3D Via Allocation Towards Routing Optimization for Monolithic 3D ICs
Monolithic 3D (M3D) is a revolutionary technology for high-density and high-performance chip design in the post-Moore era. However, it suffers from considerable thermal confinement due to the transistor stacking and insulating materials between the layers. As a way of reducing power, thereby mitigating the thermal problem, we propose a comprehensive physical design methodology that incorporates two new important items, one is blockage aware MIV (monolithic inter-tier via) placement and the other is 3D net ordering for routing, intending to optimize wire length. Precisely, we propose a three-step approach: (1) retrieving the MIV region candidates for each 3D net, (2) fine-tuning placement to secure MIV spots in the presence of blockages, and (3) performing M3D routing with net ordering to consider the fine-tuned placement result. We implement the proposed M3D design flow by utilizing commercial 2D IC EDA tools while providing seamless optimization for cross-tier connections. In the meantime, our experiments confirm that proposed M3D design flow saves wire length per cross-tier net by up to 41.42%, which corresponds to 7.68% less total net switching power, equivalently 36.79% lower energy-delay-product over the conventional state-of-the-art M3D design flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1