基于集成不平衡分类和知识扩展的微博垃圾邮件过滤

Zhipeng Jin, Qiudan Li, D. Zeng, Lei Wang
{"title":"基于集成不平衡分类和知识扩展的微博垃圾邮件过滤","authors":"Zhipeng Jin, Qiudan Li, D. Zeng, Lei Wang","doi":"10.1109/ISI.2015.7165952","DOIUrl":null,"url":null,"abstract":"Weibo has become an important information sharing platform in our daily life in China. Many applications utilize Weibo data to analyze hot topic and opinion evolution patterns to gain insights into user behavior. However, various spam messages degrade the performance of these applications and thus are essential to be filtered. In this paper, we propose a unified spam detection approach, which utilizes external knowledge sources to expand keywords features and applies an ensemble under-sampling based strategy to handle the class-imbalance problem. The experimental results show the effectiveness and robustness of our approach in Weibo data.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Filtering spam in Weibo using ensemble imbalanced classification and knowledge expansion\",\"authors\":\"Zhipeng Jin, Qiudan Li, D. Zeng, Lei Wang\",\"doi\":\"10.1109/ISI.2015.7165952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weibo has become an important information sharing platform in our daily life in China. Many applications utilize Weibo data to analyze hot topic and opinion evolution patterns to gain insights into user behavior. However, various spam messages degrade the performance of these applications and thus are essential to be filtered. In this paper, we propose a unified spam detection approach, which utilizes external knowledge sources to expand keywords features and applies an ensemble under-sampling based strategy to handle the class-imbalance problem. The experimental results show the effectiveness and robustness of our approach in Weibo data.\",\"PeriodicalId\":292352,\"journal\":{\"name\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2015.7165952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在中国,微博已经成为我们日常生活中重要的信息分享平台。许多应用程序利用微博数据来分析热门话题和意见演变模式,以深入了解用户行为。但是,各种垃圾邮件会降低这些应用程序的性能,因此必须对其进行过滤。本文提出了一种统一的垃圾邮件检测方法,该方法利用外部知识来源扩展关键词特征,并采用基于集合欠采样的策略来处理类不平衡问题。实验结果表明了该方法在微博数据中的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filtering spam in Weibo using ensemble imbalanced classification and knowledge expansion
Weibo has become an important information sharing platform in our daily life in China. Many applications utilize Weibo data to analyze hot topic and opinion evolution patterns to gain insights into user behavior. However, various spam messages degrade the performance of these applications and thus are essential to be filtered. In this paper, we propose a unified spam detection approach, which utilizes external knowledge sources to expand keywords features and applies an ensemble under-sampling based strategy to handle the class-imbalance problem. The experimental results show the effectiveness and robustness of our approach in Weibo data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1