大型分布式系统资源需求的反馈导向分析

M. Sarkar, Sarbani Roy, N. Mukherjee
{"title":"大型分布式系统资源需求的反馈导向分析","authors":"M. Sarkar, Sarbani Roy, N. Mukherjee","doi":"10.1109/CCGRID.2010.90","DOIUrl":null,"url":null,"abstract":"Resource management is one of the focus areas of Grid which identifies Job Modeling to be a very important part of it. A proper Job Modeling can be helpful in allocating jobs to their most suitable resource providers in Grid. This paper presents a feedback-guided Automatic Job Modeling technique that describes the process required to identify the most suitable resource provider for a particular job.","PeriodicalId":444485,"journal":{"name":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Feedback-Guided Analysis for Resource Requirements in Large Distributed System\",\"authors\":\"M. Sarkar, Sarbani Roy, N. Mukherjee\",\"doi\":\"10.1109/CCGRID.2010.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource management is one of the focus areas of Grid which identifies Job Modeling to be a very important part of it. A proper Job Modeling can be helpful in allocating jobs to their most suitable resource providers in Grid. This paper presents a feedback-guided Automatic Job Modeling technique that describes the process required to identify the most suitable resource provider for a particular job.\",\"PeriodicalId\":444485,\"journal\":{\"name\":\"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2010.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2010.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

资源管理是网格的重点领域之一,而任务建模是网格的重要组成部分。适当的作业建模有助于将作业分配给网格中最合适的资源提供者。本文提出了一种反馈引导的自动作业建模技术,该技术描述了为特定作业识别最合适的资源提供者所需的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feedback-Guided Analysis for Resource Requirements in Large Distributed System
Resource management is one of the focus areas of Grid which identifies Job Modeling to be a very important part of it. A proper Job Modeling can be helpful in allocating jobs to their most suitable resource providers in Grid. This paper presents a feedback-guided Automatic Job Modeling technique that describes the process required to identify the most suitable resource provider for a particular job.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Search of Visualization Metaphors for PlanetLab Multi-criteria Content Adaptation Service Selection Broker Enabling the Next Generation of Scalable Clusters Development and Support of Platforms for Research into Rare Diseases Using Cloud Constructs and Predictive Analysis to Enable Pre-Failure Process Migration in HPC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1