K. G. Krishnan, Abhishek Mohan, S. Vishnu, Steve Abraham Eapen, Amith Raj, J. Jacob
{"title":"基于强化学习的移动机器人路径规划","authors":"K. G. Krishnan, Abhishek Mohan, S. Vishnu, Steve Abraham Eapen, Amith Raj, J. Jacob","doi":"10.36548/jtcsst.2022.3.004","DOIUrl":null,"url":null,"abstract":"In complex planning and control operations and tasks like manipulating objects, assisting experts in various fields, navigating outdoor environments, and exploring uncharted territory, modern robots are designed to complement or completely replace humans. Even for those skilled in robot programming, designing a control schema for such robots to carry out these tasks is typically a challenging process that necessitates starting from scratch with a new and distinct controller for each task. The designer must consider the wide range of circumstances the robot might encounter. This kind of manual programming is typically expensive and time consuming. It would be more beneficial if a robot could learn the task on its own rather than having to be preprogrammed to perform all these tasks. In this paper, a method for the path planning of a robot in a known environment is implemented using Q-Learning by finding an optimal path from a specified starting and ending point.","PeriodicalId":107574,"journal":{"name":"Journal of Trends in Computer Science and Smart Technology","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Path Planning of Mobile Robot Using Reinforcement Learning\",\"authors\":\"K. G. Krishnan, Abhishek Mohan, S. Vishnu, Steve Abraham Eapen, Amith Raj, J. Jacob\",\"doi\":\"10.36548/jtcsst.2022.3.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex planning and control operations and tasks like manipulating objects, assisting experts in various fields, navigating outdoor environments, and exploring uncharted territory, modern robots are designed to complement or completely replace humans. Even for those skilled in robot programming, designing a control schema for such robots to carry out these tasks is typically a challenging process that necessitates starting from scratch with a new and distinct controller for each task. The designer must consider the wide range of circumstances the robot might encounter. This kind of manual programming is typically expensive and time consuming. It would be more beneficial if a robot could learn the task on its own rather than having to be preprogrammed to perform all these tasks. In this paper, a method for the path planning of a robot in a known environment is implemented using Q-Learning by finding an optimal path from a specified starting and ending point.\",\"PeriodicalId\":107574,\"journal\":{\"name\":\"Journal of Trends in Computer Science and Smart Technology\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Trends in Computer Science and Smart Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jtcsst.2022.3.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trends in Computer Science and Smart Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jtcsst.2022.3.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Path Planning of Mobile Robot Using Reinforcement Learning
In complex planning and control operations and tasks like manipulating objects, assisting experts in various fields, navigating outdoor environments, and exploring uncharted territory, modern robots are designed to complement or completely replace humans. Even for those skilled in robot programming, designing a control schema for such robots to carry out these tasks is typically a challenging process that necessitates starting from scratch with a new and distinct controller for each task. The designer must consider the wide range of circumstances the robot might encounter. This kind of manual programming is typically expensive and time consuming. It would be more beneficial if a robot could learn the task on its own rather than having to be preprogrammed to perform all these tasks. In this paper, a method for the path planning of a robot in a known environment is implemented using Q-Learning by finding an optimal path from a specified starting and ending point.