基于被动生命体征监测技术的住院患者病情恶化预测模型

Veronica Maidel, Maayan Lia Yizraeli Davidovich, Z. Shinar, Tal Klap
{"title":"基于被动生命体征监测技术的住院患者病情恶化预测模型","authors":"Veronica Maidel, Maayan Lia Yizraeli Davidovich, Z. Shinar, Tal Klap","doi":"10.23919/cinc53138.2021.9662864","DOIUrl":null,"url":null,"abstract":"Lately, many health systems accelerated their initiatives of advanced remote monitoring systems. Moving to an unattended environment requires overcoming patients' compliance issues and demonstrating the effectiveness of remote monitoring technology. Current Early Warning Scores detection of deterioration, commonly based on spot check EMR data, demonstrates low translational impact from one facility to another. In this study we used vitals collected passively by a sensor, to build a Machine Learning model for timely prediction of deteriorating patients, within 24-hours of their transfer to ICU or death. Time series features, such as trends and vitals' variability were used in conjunction with age & comorbidity data. Evaluating the model yielded an AUROC of 0.81 on data from an inpatient setting, and an AUROC of 0.88 on an independent test set from a COVID-19 unit. The suggested model, based on passive measurement technology, performs equally well as models based on EMR that include nurse inputs. Applying the model on other acute settings (such as a COVID-19 unit) showed similar performance, increasing confidence of its robustness and transferability. The model performance combined with the fact that it does not require human compliance, makes it a good candidate for future testing on home settings.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prediction Model of In-Patient Deteriorations Based on Passive Vital Signs Monitoring Technology\",\"authors\":\"Veronica Maidel, Maayan Lia Yizraeli Davidovich, Z. Shinar, Tal Klap\",\"doi\":\"10.23919/cinc53138.2021.9662864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lately, many health systems accelerated their initiatives of advanced remote monitoring systems. Moving to an unattended environment requires overcoming patients' compliance issues and demonstrating the effectiveness of remote monitoring technology. Current Early Warning Scores detection of deterioration, commonly based on spot check EMR data, demonstrates low translational impact from one facility to another. In this study we used vitals collected passively by a sensor, to build a Machine Learning model for timely prediction of deteriorating patients, within 24-hours of their transfer to ICU or death. Time series features, such as trends and vitals' variability were used in conjunction with age & comorbidity data. Evaluating the model yielded an AUROC of 0.81 on data from an inpatient setting, and an AUROC of 0.88 on an independent test set from a COVID-19 unit. The suggested model, based on passive measurement technology, performs equally well as models based on EMR that include nurse inputs. Applying the model on other acute settings (such as a COVID-19 unit) showed similar performance, increasing confidence of its robustness and transferability. The model performance combined with the fact that it does not require human compliance, makes it a good candidate for future testing on home settings.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,许多卫生系统加快了先进远程监测系统的行动。转移到无人值守的环境需要克服患者的依从性问题,并展示远程监测技术的有效性。目前的早期预警评分(Early Warning Scores)对恶化的检测,通常基于EMR数据的抽查,表明从一个设施到另一个设施的转化影响很小。在这项研究中,我们使用传感器被动收集的生命体征来建立一个机器学习模型,以便在患者转至ICU或死亡后24小时内及时预测病情恶化的患者。时间序列特征,如趋势和生命体征的可变性与年龄和合并症数据一起使用。对该模型进行评估后,住院患者数据的AUROC为0.81,来自COVID-19单位的独立测试集的AUROC为0.88。建议的基于被动测量技术的模型与基于包含护士输入的电子病历模型表现同样良好。将该模型应用于其他急性环境(如COVID-19单位)显示出类似的性能,增加了对其鲁棒性和可转移性的信心。该模型的性能加上它不需要人工遵守的事实,使其成为未来在家庭环境中进行测试的一个很好的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Prediction Model of In-Patient Deteriorations Based on Passive Vital Signs Monitoring Technology
Lately, many health systems accelerated their initiatives of advanced remote monitoring systems. Moving to an unattended environment requires overcoming patients' compliance issues and demonstrating the effectiveness of remote monitoring technology. Current Early Warning Scores detection of deterioration, commonly based on spot check EMR data, demonstrates low translational impact from one facility to another. In this study we used vitals collected passively by a sensor, to build a Machine Learning model for timely prediction of deteriorating patients, within 24-hours of their transfer to ICU or death. Time series features, such as trends and vitals' variability were used in conjunction with age & comorbidity data. Evaluating the model yielded an AUROC of 0.81 on data from an inpatient setting, and an AUROC of 0.88 on an independent test set from a COVID-19 unit. The suggested model, based on passive measurement technology, performs equally well as models based on EMR that include nurse inputs. Applying the model on other acute settings (such as a COVID-19 unit) showed similar performance, increasing confidence of its robustness and transferability. The model performance combined with the fact that it does not require human compliance, makes it a good candidate for future testing on home settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1