基于卡尔曼滤波的高语音质量噪声抑制

N. Tanabe, T. Furukawa, H. Matsue, S. Tsujii
{"title":"基于卡尔曼滤波的高语音质量噪声抑制","authors":"N. Tanabe, T. Furukawa, H. Matsue, S. Tsujii","doi":"10.1109/ISPACS.2006.364895","DOIUrl":null,"url":null,"abstract":"We propose a noise suppression algorithm based on Kaiman filter. The algorithm achieves a noise suppression with high speech quality under the condition of the AWGN (additive white Gaussian noise), from the canonical state space models with a state equation composed of the clean speech signal and an observation equation composed of the clean speech signal and AWGN. The special feature of the proposed algorithm is realization of high speech quality noise suppression utilizing only the Kalman filter, while the conventional algorithm utilizes the linear prediction algorithm and the Kalman filter. The simulation results show that the proposed method improved the noise suppression capability by about 5 dB than that of the conventional method","PeriodicalId":178644,"journal":{"name":"2006 International Symposium on Intelligent Signal Processing and Communications","volume":"67 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Noise Suppression with High Speech Quality Based on Kalman Filter\",\"authors\":\"N. Tanabe, T. Furukawa, H. Matsue, S. Tsujii\",\"doi\":\"10.1109/ISPACS.2006.364895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a noise suppression algorithm based on Kaiman filter. The algorithm achieves a noise suppression with high speech quality under the condition of the AWGN (additive white Gaussian noise), from the canonical state space models with a state equation composed of the clean speech signal and an observation equation composed of the clean speech signal and AWGN. The special feature of the proposed algorithm is realization of high speech quality noise suppression utilizing only the Kalman filter, while the conventional algorithm utilizes the linear prediction algorithm and the Kalman filter. The simulation results show that the proposed method improved the noise suppression capability by about 5 dB than that of the conventional method\",\"PeriodicalId\":178644,\"journal\":{\"name\":\"2006 International Symposium on Intelligent Signal Processing and Communications\",\"volume\":\"67 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Intelligent Signal Processing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2006.364895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Intelligent Signal Processing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2006.364895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于Kaiman滤波的噪声抑制算法。该算法从由纯净语音信号组成的状态方程和由纯净语音信号和加性高斯白噪声组成的观测方程的正则状态空间模型出发,实现了在加性高斯白噪声条件下的高质量语音抑制。该算法的特点是仅利用卡尔曼滤波器实现高语音质量的噪声抑制,而传统算法则利用线性预测算法和卡尔曼滤波器。仿真结果表明,该方法的噪声抑制能力比传统方法提高了约5 dB
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise Suppression with High Speech Quality Based on Kalman Filter
We propose a noise suppression algorithm based on Kaiman filter. The algorithm achieves a noise suppression with high speech quality under the condition of the AWGN (additive white Gaussian noise), from the canonical state space models with a state equation composed of the clean speech signal and an observation equation composed of the clean speech signal and AWGN. The special feature of the proposed algorithm is realization of high speech quality noise suppression utilizing only the Kalman filter, while the conventional algorithm utilizes the linear prediction algorithm and the Kalman filter. The simulation results show that the proposed method improved the noise suppression capability by about 5 dB than that of the conventional method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossy Strict Multilevel Successive Elimination Algorithm for Fast Motion Estimation A Subpixel Image Matching Technique Using Phase-Only Correlation Phase Unwrapping of Self-mixing Signals Observed in Optical Feedback Interferometry for Displacement Measurement A Low-Power and Low-Noise Amplifier for 3-5GHz UWB Applications Automatic Image Annotation based-on Rough Set Theory with Visual Keys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1