使用神经网络进行严重性测量

Su-wen Chen, M. Evens, D. Trace, F. Naeymi-Rad
{"title":"使用神经网络进行严重性测量","authors":"Su-wen Chen, M. Evens, D. Trace, F. Naeymi-Rad","doi":"10.1109/CBMS.1992.245038","DOIUrl":null,"url":null,"abstract":"The authors introduce a novel patient severity measurement model using neural networks. A three layer, fully connected backpropagation neural network was used in the pilot experiment. The results are promising and demonstrate that the backpropagation neural network technique is capable of assessing the severity value by learning from raw data. The neural network is easy to improve and of relatively low cost. It saves the expert's valuable time used in assigning numerical values to variables.<<ETX>>","PeriodicalId":197891,"journal":{"name":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Severity measurements using neural networks\",\"authors\":\"Su-wen Chen, M. Evens, D. Trace, F. Naeymi-Rad\",\"doi\":\"10.1109/CBMS.1992.245038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors introduce a novel patient severity measurement model using neural networks. A three layer, fully connected backpropagation neural network was used in the pilot experiment. The results are promising and demonstrate that the backpropagation neural network technique is capable of assessing the severity value by learning from raw data. The neural network is easy to improve and of relatively low cost. It saves the expert's valuable time used in assigning numerical values to variables.<<ETX>>\",\"PeriodicalId\":197891,\"journal\":{\"name\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.1992.245038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1992.245038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于神经网络的患者严重程度测量模型。实验采用了三层全连接反向传播神经网络。结果表明,反向传播神经网络技术能够通过从原始数据中学习来评估严重程度值。神经网络易于改进,成本相对较低。它节省了专家在为变量赋值时所花费的宝贵时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Severity measurements using neural networks
The authors introduce a novel patient severity measurement model using neural networks. A three layer, fully connected backpropagation neural network was used in the pilot experiment. The results are promising and demonstrate that the backpropagation neural network technique is capable of assessing the severity value by learning from raw data. The neural network is easy to improve and of relatively low cost. It saves the expert's valuable time used in assigning numerical values to variables.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local motion identification and correction schemes for ultrafast CT flow studies Graphical user interface system for automatic 3-D medical image analysis GAMEES II: an environment for building probabilistic expert systems based on arrays of Bayesian belief networks A methodology for the validation of image segmentation methods Shape analysis of mammographic calcifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1