{"title":"基于多核计算的量子传输的高性能模拟","authors":"Yosang Jeong, H. Ryu","doi":"10.1145/3440722.3440879","DOIUrl":null,"url":null,"abstract":"The Non-Equilibrium Green’s Function (NEGF) has been widely utilized in the field of nanoscience and nanotechnology to predict carrier transport behaviors in electronic device channels of sizes in a quantum regime. This work explores how much performance improvement can be driven for NEGF computations with unique features of manycore computing, where the core numerical step of NEGF computations involves a recursive process of matrix-matrix multiplication. The major techniques adopted for the performance enhancement are data-restructuring, matrix-tiling, thread-scheduling, and offload computing and we present in-depth discussion on why they are critical to fully exploit the power of manycore computing hardware including Intel Xeon Phi Knights Landing systems and NVIDIA general-purpose graphic processing unit (GPU) devices. Performance of the optimized algorithm has been tested in a single computing node, where the host is Xeon Phi 7210 that is equipped with two NVIDIA Quadro GV100 GPU devices. The target structure of NEGF simulations is a [100] silicon nanowire that consists of 100K atoms involving a 1000K × 1000K complex Hamiltonian matrix. Through rigorous benchmark tests, we show, with optimization techniques whose details are elaborately explained, the workload can be accelerated almost by a factor of up to ∼ 20 compared to the unoptimized case.","PeriodicalId":183674,"journal":{"name":"The International Conference on High Performance Computing in Asia-Pacific Region Companion","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Performance Simulations of Quantum Transport using Manycore Computing\",\"authors\":\"Yosang Jeong, H. Ryu\",\"doi\":\"10.1145/3440722.3440879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Non-Equilibrium Green’s Function (NEGF) has been widely utilized in the field of nanoscience and nanotechnology to predict carrier transport behaviors in electronic device channels of sizes in a quantum regime. This work explores how much performance improvement can be driven for NEGF computations with unique features of manycore computing, where the core numerical step of NEGF computations involves a recursive process of matrix-matrix multiplication. The major techniques adopted for the performance enhancement are data-restructuring, matrix-tiling, thread-scheduling, and offload computing and we present in-depth discussion on why they are critical to fully exploit the power of manycore computing hardware including Intel Xeon Phi Knights Landing systems and NVIDIA general-purpose graphic processing unit (GPU) devices. Performance of the optimized algorithm has been tested in a single computing node, where the host is Xeon Phi 7210 that is equipped with two NVIDIA Quadro GV100 GPU devices. The target structure of NEGF simulations is a [100] silicon nanowire that consists of 100K atoms involving a 1000K × 1000K complex Hamiltonian matrix. Through rigorous benchmark tests, we show, with optimization techniques whose details are elaborately explained, the workload can be accelerated almost by a factor of up to ∼ 20 compared to the unoptimized case.\",\"PeriodicalId\":183674,\"journal\":{\"name\":\"The International Conference on High Performance Computing in Asia-Pacific Region Companion\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on High Performance Computing in Asia-Pacific Region Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440722.3440879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on High Performance Computing in Asia-Pacific Region Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440722.3440879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Performance Simulations of Quantum Transport using Manycore Computing
The Non-Equilibrium Green’s Function (NEGF) has been widely utilized in the field of nanoscience and nanotechnology to predict carrier transport behaviors in electronic device channels of sizes in a quantum regime. This work explores how much performance improvement can be driven for NEGF computations with unique features of manycore computing, where the core numerical step of NEGF computations involves a recursive process of matrix-matrix multiplication. The major techniques adopted for the performance enhancement are data-restructuring, matrix-tiling, thread-scheduling, and offload computing and we present in-depth discussion on why they are critical to fully exploit the power of manycore computing hardware including Intel Xeon Phi Knights Landing systems and NVIDIA general-purpose graphic processing unit (GPU) devices. Performance of the optimized algorithm has been tested in a single computing node, where the host is Xeon Phi 7210 that is equipped with two NVIDIA Quadro GV100 GPU devices. The target structure of NEGF simulations is a [100] silicon nanowire that consists of 100K atoms involving a 1000K × 1000K complex Hamiltonian matrix. Through rigorous benchmark tests, we show, with optimization techniques whose details are elaborately explained, the workload can be accelerated almost by a factor of up to ∼ 20 compared to the unoptimized case.