一种网络入侵检测系统的深度学习方法

A. Javaid, Quamar Niyaz, Weiqing Sun, Mansoor Alam
{"title":"一种网络入侵检测系统的深度学习方法","authors":"A. Javaid, Quamar Niyaz, Weiqing Sun, Mansoor Alam","doi":"10.4108/eai.3-12-2015.2262516","DOIUrl":null,"url":null,"abstract":"A Network Intrusion Detection System (NIDS) helps system administrators to detect network security breaches in \n \ntheir organizations. However, many challenges arise while \n \ndeveloping a flexible and efficient NIDS for unforeseen and unpredictable attacks. We propose a deep learning based approach for developing such an efficient and flexible NIDS. \n \nWe use Self-taught Learning (STL), a deep learning based technique, on NSL-KDD - a benchmark dataset for network \n \nintrusion. We present the performance of our approach and compare it with a few previous work. Compared metrics include accuracy, precision, recall, and f-measure values.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"848","resultStr":"{\"title\":\"A Deep Learning Approach for Network Intrusion Detection System\",\"authors\":\"A. Javaid, Quamar Niyaz, Weiqing Sun, Mansoor Alam\",\"doi\":\"10.4108/eai.3-12-2015.2262516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Network Intrusion Detection System (NIDS) helps system administrators to detect network security breaches in \\n \\ntheir organizations. However, many challenges arise while \\n \\ndeveloping a flexible and efficient NIDS for unforeseen and unpredictable attacks. We propose a deep learning based approach for developing such an efficient and flexible NIDS. \\n \\nWe use Self-taught Learning (STL), a deep learning based technique, on NSL-KDD - a benchmark dataset for network \\n \\nintrusion. We present the performance of our approach and compare it with a few previous work. Compared metrics include accuracy, precision, recall, and f-measure values.\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"848\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.3-12-2015.2262516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.3-12-2015.2262516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 848

摘要

网络入侵检测系统(NIDS)可以帮助系统管理员检测组织中的网络安全漏洞。然而,在为不可预见和不可预测的攻击开发灵活高效的NIDS时,会出现许多挑战。我们提出了一种基于深度学习的方法来开发这种高效灵活的NIDS。我们在网络入侵的基准数据集NSL-KDD上使用了基于深度学习的自学(STL)技术。我们介绍了我们的方法的性能,并将其与以前的一些工作进行了比较。比较指标包括准确性、精密度、召回率和f测量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Approach for Network Intrusion Detection System
A Network Intrusion Detection System (NIDS) helps system administrators to detect network security breaches in their organizations. However, many challenges arise while developing a flexible and efficient NIDS for unforeseen and unpredictable attacks. We propose a deep learning based approach for developing such an efficient and flexible NIDS. We use Self-taught Learning (STL), a deep learning based technique, on NSL-KDD - a benchmark dataset for network intrusion. We present the performance of our approach and compare it with a few previous work. Compared metrics include accuracy, precision, recall, and f-measure values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Systemic Security and Privacy Review: Attacks and Prevention Mechanisms over IOT Layers Mitigating Vulnerabilities in Closed Source Software Comparing Online Surveys for Cybersecurity: SONA and MTurk Dynamic Risk Assessment and Analysis Framework for Large-Scale Cyber-Physical Systems How data-sharing nudges influence people's privacy preferences: A machine learning-based analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1