用动作捕捉分析蜥蜴的小跑步态

Chang-Hoi Kim, Hocheol Shin, H. Lee
{"title":"用动作捕捉分析蜥蜴的小跑步态","authors":"Chang-Hoi Kim, Hocheol Shin, H. Lee","doi":"10.1109/ICCAS.2013.6704140","DOIUrl":null,"url":null,"abstract":"Research into the gait planning of a walking robot is the underlying development of quadruped robots. Despite the efforts in stable gait planning, many walking robots that have been developed thus far do not have enough ability to adapt to uneven territory. In this paper, we acquired the motion data of the trotting lizards using the motion capture equipment and analyzed the gait systematically. In addition, we applied it to the kinematic model of the lizard and acquired the trajectory of each joint through an inverse kinematic solution. Moreover, we proposed the joint space-based gait of the lizard model by approximating the acquired joint trajectory to a sinusoidal function. We verified through the simulation that the proposed gait faithfully follows actual gait of lizards.","PeriodicalId":415263,"journal":{"name":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Trotting gait analysis of a lizard using motion capture\",\"authors\":\"Chang-Hoi Kim, Hocheol Shin, H. Lee\",\"doi\":\"10.1109/ICCAS.2013.6704140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research into the gait planning of a walking robot is the underlying development of quadruped robots. Despite the efforts in stable gait planning, many walking robots that have been developed thus far do not have enough ability to adapt to uneven territory. In this paper, we acquired the motion data of the trotting lizards using the motion capture equipment and analyzed the gait systematically. In addition, we applied it to the kinematic model of the lizard and acquired the trajectory of each joint through an inverse kinematic solution. Moreover, we proposed the joint space-based gait of the lizard model by approximating the acquired joint trajectory to a sinusoidal function. We verified through the simulation that the proposed gait faithfully follows actual gait of lizards.\",\"PeriodicalId\":415263,\"journal\":{\"name\":\"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2013.6704140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2013.6704140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对行走机器人步态规划的研究是四足机器人发展的基础。尽管在稳定步态规划方面做出了努力,但目前开发的许多步行机器人对不平坦区域的适应能力不足。本文利用运动捕捉设备采集了小跑蜥蜴的运动数据,并对其步态进行了系统的分析。此外,我们将其应用于蜥蜴的运动学模型,并通过运动学逆解获得了每个关节的运动轨迹。此外,通过将获得的关节轨迹近似为正弦函数,提出了蜥蜴关节空间步态模型。通过仿真验证了所提出的步态与蜥蜴的实际步态基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trotting gait analysis of a lizard using motion capture
Research into the gait planning of a walking robot is the underlying development of quadruped robots. Despite the efforts in stable gait planning, many walking robots that have been developed thus far do not have enough ability to adapt to uneven territory. In this paper, we acquired the motion data of the trotting lizards using the motion capture equipment and analyzed the gait systematically. In addition, we applied it to the kinematic model of the lizard and acquired the trajectory of each joint through an inverse kinematic solution. Moreover, we proposed the joint space-based gait of the lizard model by approximating the acquired joint trajectory to a sinusoidal function. We verified through the simulation that the proposed gait faithfully follows actual gait of lizards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of one-legged jumping robot with artificial musculoskeletal system Development of a novel FES control system based on treadmill motor current variation for gait rehabilitation of hemiplegic patients after stroke Characteristic analysis of visual evoked potentials and posterior dominant rhythm by use of EEG model Optical flow estimation method to determine compensation by multi resolution of hierarchical structure Design and analysis of a 6-DOF force/torque sensor for human gait analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1