暖雨体微物理方案的渐近比较

Juliane Rosemeier, Manuel Baumgartner, P. Spichtinger
{"title":"暖雨体微物理方案的渐近比较","authors":"Juliane Rosemeier, Manuel Baumgartner, P. Spichtinger","doi":"10.1515/mcwf-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract Clouds are important components of the atmosphere. As it is usually not possible to treat them as ensembles of huge numbers of particles, parameterizations on the basis of averaged quantities (mass and/or number concentration) must be derived. Since no first-principles derivations of such averaged schemes are available today, many alternative approximating schemes of cloud processes exist. Most of these come in the form of nonlinear differential equations. It is unclear whether these different cloud schemes behave similarly under controlled local conditions, and much less so when they are embedded dynamically in a full atmospheric flow model. We use mathematical methods from the theory of dynamical systems and asymptotic analysis to compare two operational cloud schemes and one research scheme qualitatively in a simplified context in which the moist dynamics is reduced to a system of ODEs. It turns out that these schemes behave qualitatively differently on shorter time scales, whereas at least their long time behavior is similar under certain conditions. These results show that the quality of computational forecasts of moist atmospheric flows will generally depend strongly on the formulation of the cloud schemes used.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Intercomparison of Warm-Rain Bulk Microphysics Schemes using Asymptotics\",\"authors\":\"Juliane Rosemeier, Manuel Baumgartner, P. Spichtinger\",\"doi\":\"10.1515/mcwf-2018-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clouds are important components of the atmosphere. As it is usually not possible to treat them as ensembles of huge numbers of particles, parameterizations on the basis of averaged quantities (mass and/or number concentration) must be derived. Since no first-principles derivations of such averaged schemes are available today, many alternative approximating schemes of cloud processes exist. Most of these come in the form of nonlinear differential equations. It is unclear whether these different cloud schemes behave similarly under controlled local conditions, and much less so when they are embedded dynamically in a full atmospheric flow model. We use mathematical methods from the theory of dynamical systems and asymptotic analysis to compare two operational cloud schemes and one research scheme qualitatively in a simplified context in which the moist dynamics is reduced to a system of ODEs. It turns out that these schemes behave qualitatively differently on shorter time scales, whereas at least their long time behavior is similar under certain conditions. These results show that the quality of computational forecasts of moist atmospheric flows will generally depend strongly on the formulation of the cloud schemes used.\",\"PeriodicalId\":106200,\"journal\":{\"name\":\"Mathematics of Climate and Weather Forecasting\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Climate and Weather Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcwf-2018-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Climate and Weather Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcwf-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

云是大气的重要组成部分。由于通常不可能将它们视为大量粒子的集合,因此必须推导基于平均量(质量和/或数量浓度)的参数化。由于目前还没有这种平均格式的第一性原理推导,因此存在许多云过程的替代近似格式。大多数都是非线性微分方程的形式。目前还不清楚这些不同的云方案在受控的局部条件下是否表现相似,而当它们被动态地嵌入到一个完整的大气流动模型中时,就更不清楚了。我们利用动力系统理论和渐近分析的数学方法,在将湿动力学简化为ode系统的简化背景下,定性地比较了两种操作云方案和一种研究方案。事实证明,这些方案在较短的时间尺度上表现出质的不同,而至少在某些条件下,它们的长时间行为是相似的。这些结果表明,湿润大气流动的计算预报质量通常在很大程度上取决于所用云方案的制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intercomparison of Warm-Rain Bulk Microphysics Schemes using Asymptotics
Abstract Clouds are important components of the atmosphere. As it is usually not possible to treat them as ensembles of huge numbers of particles, parameterizations on the basis of averaged quantities (mass and/or number concentration) must be derived. Since no first-principles derivations of such averaged schemes are available today, many alternative approximating schemes of cloud processes exist. Most of these come in the form of nonlinear differential equations. It is unclear whether these different cloud schemes behave similarly under controlled local conditions, and much less so when they are embedded dynamically in a full atmospheric flow model. We use mathematical methods from the theory of dynamical systems and asymptotic analysis to compare two operational cloud schemes and one research scheme qualitatively in a simplified context in which the moist dynamics is reduced to a system of ODEs. It turns out that these schemes behave qualitatively differently on shorter time scales, whereas at least their long time behavior is similar under certain conditions. These results show that the quality of computational forecasts of moist atmospheric flows will generally depend strongly on the formulation of the cloud schemes used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding Grids for Efficient Cloud Dynamics Simulations Across Scales On strongly nonlinear gravity waves in a vertically sheared atmosphere Shallow-cloud impact on climate and uncertainty: A simple stochastic model Pattern formation in clouds via Turing instabilities Estimation of seasonal boundaries using temperature data: a case of northwest part of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1