面向上下文感知语义分割的远程像素连接

Muhammad Zubair Khan, Yugyung Lee, M. Khan, Arslan Munir
{"title":"面向上下文感知语义分割的远程像素连接","authors":"Muhammad Zubair Khan, Yugyung Lee, M. Khan, Arslan Munir","doi":"10.1109/BHI56158.2022.9926855","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is one of the challenging tasks in computer vision. Before the advent of deep learning, hand-crafted features were used to semantically extract the region-of-interest (ROI). Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with a sequential block embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization to reduce internal covariate shift in data distributions. We have used LUNA, ISIC2018, and DRIVE datasets to reflect three different segmentation problems (lung nodules, skin lesions, vessels) and claim the effectiveness of the proposed architecture. The network is also compared with other techniques designed to highlight similar problems. It is found through empirical evidence that our method shows promising results when compared with other segmentation techniques.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"2003 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Long - Range Pixels Connection for Context-Aware Semantic Segmentation\",\"authors\":\"Muhammad Zubair Khan, Yugyung Lee, M. Khan, Arslan Munir\",\"doi\":\"10.1109/BHI56158.2022.9926855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation is one of the challenging tasks in computer vision. Before the advent of deep learning, hand-crafted features were used to semantically extract the region-of-interest (ROI). Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with a sequential block embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization to reduce internal covariate shift in data distributions. We have used LUNA, ISIC2018, and DRIVE datasets to reflect three different segmentation problems (lung nodules, skin lesions, vessels) and claim the effectiveness of the proposed architecture. The network is also compared with other techniques designed to highlight similar problems. It is found through empirical evidence that our method shows promising results when compared with other segmentation techniques.\",\"PeriodicalId\":347210,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"2003 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI56158.2022.9926855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语义分割是计算机视觉中具有挑战性的任务之一。在深度学习出现之前,手工制作的特征用于语义提取感兴趣区域(ROI)。近年来,深度学习在语义图像分割方面取得了巨大的进展。先前开发的受U-Net启发的架构采用连续跨步和池化操作,导致空间数据丢失。此外,该方法缺乏建立长期的像素连接来保存上下文知识和减少预测中的空间损失。本文开发了一种编码器-解码器结构,该结构具有嵌入在长跳过连接和密集连接的卷积块中的顺序块。该网络非线性地结合了跨编码器-解码器路径的特征映射,以查找图像像素之间的依赖性和相关性。此外,在最后的编码层中保留了密集连接的卷积块,以重用特征并防止冗余数据共享。该方法采用批量归一化来减少数据分布中的内部协变量移位。我们使用LUNA、ISIC2018和DRIVE数据集来反映三种不同的分割问题(肺结节、皮肤病变、血管),并声称所提出架构的有效性。该网络还与其他旨在突出类似问题的技术进行了比较。通过实验证明,与其他分割技术相比,我们的方法显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Long - Range Pixels Connection for Context-Aware Semantic Segmentation
Semantic segmentation is one of the challenging tasks in computer vision. Before the advent of deep learning, hand-crafted features were used to semantically extract the region-of-interest (ROI). Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with a sequential block embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization to reduce internal covariate shift in data distributions. We have used LUNA, ISIC2018, and DRIVE datasets to reflect three different segmentation problems (lung nodules, skin lesions, vessels) and claim the effectiveness of the proposed architecture. The network is also compared with other techniques designed to highlight similar problems. It is found through empirical evidence that our method shows promising results when compared with other segmentation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BEBOP: Bidirectional dEep Brain cOnnectivity maPping Stabilizing Skeletal Pose Estimation using mmWave Radar via Dynamic Model and Filtering Behavioral Data Categorization for Transformers-based Models in Digital Health Gender Difference in Prognosis of Patients with Heart Failure: A Propensity Score Matching Analysis Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1