{"title":"高可用性HPC系统服务的主/主复制","authors":"C. Engelmann, S. Scott, C. Leangsuksun, Xubin He","doi":"10.1109/ARES.2006.23","DOIUrl":null,"url":null,"abstract":"Today's high performance computing systems have several reliability deficiencies resulting in availability and serviceability issues. Head and service nodes represent a single point of failure and control for an entire system as they render it inaccessible and unmanageable in case of a failure until repair, causing a significant downtime. This paper introduces two distinct replication methods (internal and external) for providing symmetric active/active high availability for multiple head and service nodes running in virtual synchrony. It presents a comparison of both methods in terms of expected correctness, ease-of-use and performance based on early results from ongoing work in providing symmetric active/active high availability for two HPC system services (TORQUE and PVFS metadata server). It continues with a short description of a distributed mutual exclusion algorithm and a brief statement regarding the handling of Byzantine failures. This paper concludes with an overview of past and ongoing work, and a short summary of the presented research.","PeriodicalId":106780,"journal":{"name":"First International Conference on Availability, Reliability and Security (ARES'06)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Active/active replication for highly available HPC system services\",\"authors\":\"C. Engelmann, S. Scott, C. Leangsuksun, Xubin He\",\"doi\":\"10.1109/ARES.2006.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's high performance computing systems have several reliability deficiencies resulting in availability and serviceability issues. Head and service nodes represent a single point of failure and control for an entire system as they render it inaccessible and unmanageable in case of a failure until repair, causing a significant downtime. This paper introduces two distinct replication methods (internal and external) for providing symmetric active/active high availability for multiple head and service nodes running in virtual synchrony. It presents a comparison of both methods in terms of expected correctness, ease-of-use and performance based on early results from ongoing work in providing symmetric active/active high availability for two HPC system services (TORQUE and PVFS metadata server). It continues with a short description of a distributed mutual exclusion algorithm and a brief statement regarding the handling of Byzantine failures. This paper concludes with an overview of past and ongoing work, and a short summary of the presented research.\",\"PeriodicalId\":106780,\"journal\":{\"name\":\"First International Conference on Availability, Reliability and Security (ARES'06)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Conference on Availability, Reliability and Security (ARES'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2006.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Availability, Reliability and Security (ARES'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2006.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active/active replication for highly available HPC system services
Today's high performance computing systems have several reliability deficiencies resulting in availability and serviceability issues. Head and service nodes represent a single point of failure and control for an entire system as they render it inaccessible and unmanageable in case of a failure until repair, causing a significant downtime. This paper introduces two distinct replication methods (internal and external) for providing symmetric active/active high availability for multiple head and service nodes running in virtual synchrony. It presents a comparison of both methods in terms of expected correctness, ease-of-use and performance based on early results from ongoing work in providing symmetric active/active high availability for two HPC system services (TORQUE and PVFS metadata server). It continues with a short description of a distributed mutual exclusion algorithm and a brief statement regarding the handling of Byzantine failures. This paper concludes with an overview of past and ongoing work, and a short summary of the presented research.