Nexus:事件驱动网络程序的推测执行

Huiba Li, Xicheng Lu, Yuxing Peng
{"title":"Nexus:事件驱动网络程序的推测执行","authors":"Huiba Li, Xicheng Lu, Yuxing Peng","doi":"10.1109/ICPADS.2010.113","DOIUrl":null,"url":null,"abstract":"The efficiency of communication is a key factor to the performance of networking applications, and concurrent communication is an important approach to the efficiency of communication. However, many concurrency opportunities are very difficult to exploit because they depend on some undeterministic conditions. If these conditions are highly predictable, speculative execution can be a very effective approach to cope with the uncertainties. Existing researches on speculation seldom target at networking systems, and none of them can handle the event-driven model that is very popular in such systems. In this paper, we propose Nexus, a novel speculation scheme that supports event-driven networking applications. Nexus analyzes the dependence relationship of events, and performs speculation according to the duality of events and threads. Evaluation on a prototype implementation of nexus shows that this approach can significantly reduces the time needed to complete an event-driven program.","PeriodicalId":365914,"journal":{"name":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nexus: Speculative Execution for Event-Driven Networking Programs\",\"authors\":\"Huiba Li, Xicheng Lu, Yuxing Peng\",\"doi\":\"10.1109/ICPADS.2010.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of communication is a key factor to the performance of networking applications, and concurrent communication is an important approach to the efficiency of communication. However, many concurrency opportunities are very difficult to exploit because they depend on some undeterministic conditions. If these conditions are highly predictable, speculative execution can be a very effective approach to cope with the uncertainties. Existing researches on speculation seldom target at networking systems, and none of them can handle the event-driven model that is very popular in such systems. In this paper, we propose Nexus, a novel speculation scheme that supports event-driven networking applications. Nexus analyzes the dependence relationship of events, and performs speculation according to the duality of events and threads. Evaluation on a prototype implementation of nexus shows that this approach can significantly reduces the time needed to complete an event-driven program.\",\"PeriodicalId\":365914,\"journal\":{\"name\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.2010.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2010.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通信效率是影响网络应用性能的关键因素,而并行通信是提高通信效率的重要途径。然而,许多并发机会很难利用,因为它们依赖于一些不确定的条件。如果这些条件是高度可预测的,投机执行可以是一个非常有效的方法来应对不确定性。现有的投机研究很少针对网络系统,也没有一个研究能够处理网络系统中非常流行的事件驱动模型。在本文中,我们提出了Nexus,一个新的推测方案,支持事件驱动的网络应用。Nexus分析事件之间的依赖关系,并根据事件和线程的二元性进行推测。对nexus原型实现的评估表明,这种方法可以显著减少完成事件驱动程序所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nexus: Speculative Execution for Event-Driven Networking Programs
The efficiency of communication is a key factor to the performance of networking applications, and concurrent communication is an important approach to the efficiency of communication. However, many concurrency opportunities are very difficult to exploit because they depend on some undeterministic conditions. If these conditions are highly predictable, speculative execution can be a very effective approach to cope with the uncertainties. Existing researches on speculation seldom target at networking systems, and none of them can handle the event-driven model that is very popular in such systems. In this paper, we propose Nexus, a novel speculation scheme that supports event-driven networking applications. Nexus analyzes the dependence relationship of events, and performs speculation according to the duality of events and threads. Evaluation on a prototype implementation of nexus shows that this approach can significantly reduces the time needed to complete an event-driven program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixed-Parallel Implementations of Extrapolation Methods with Reduced Synchronization Overhead for Large Shared-Memory Computers Kumoi: A High-Level Scripting Environment for Collective Virtual Machines A Pervasive Simplified Method for Human Movement Pattern Assessing Broadcasting Algorithm Via Shortest Paths Detection of a Weak Conjunction of Unstable Predicates in Dynamic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1