采用CNN-GO的七段显示自动检测与判读系统

Autanan Wannachai, Wanarut Boonyung, Artit Yawootti, Pinit Nuangpirom, Ronnachart Munsin
{"title":"采用CNN-GO的七段显示自动检测与判读系统","authors":"Autanan Wannachai, Wanarut Boonyung, Artit Yawootti, Pinit Nuangpirom, Ronnachart Munsin","doi":"10.1109/GTSD54989.2022.9989301","DOIUrl":null,"url":null,"abstract":"In industrial plants, machines and measuring instruments are displayed through a seven-segment display. The machine is operating for more than 20 hours/day. The operator cannot check measurement data or status all the time. In addition, human error affects overall performance and time. This research aims to develop an embedded system for interpreting data from seven segment displays through online image processing. CNN (Convolution Neural Network) is applied in the detection and interpretation process. This paper proposes seven-segment display automatic detection and interpretation system using CNN-GO. An IoT device takes the photo of the measuring instrument's seven-segment display and sends the image to the server. The server interprets an image to numerical data using CNN-GO. Grayscale and Overlapping scanning are applied to increase the accuracy of detection and interpretation of numerical data.","PeriodicalId":125445,"journal":{"name":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seven-segment Display Automatic Detection and Interpretation System using CNN-GO\",\"authors\":\"Autanan Wannachai, Wanarut Boonyung, Artit Yawootti, Pinit Nuangpirom, Ronnachart Munsin\",\"doi\":\"10.1109/GTSD54989.2022.9989301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In industrial plants, machines and measuring instruments are displayed through a seven-segment display. The machine is operating for more than 20 hours/day. The operator cannot check measurement data or status all the time. In addition, human error affects overall performance and time. This research aims to develop an embedded system for interpreting data from seven segment displays through online image processing. CNN (Convolution Neural Network) is applied in the detection and interpretation process. This paper proposes seven-segment display automatic detection and interpretation system using CNN-GO. An IoT device takes the photo of the measuring instrument's seven-segment display and sends the image to the server. The server interprets an image to numerical data using CNN-GO. Grayscale and Overlapping scanning are applied to increase the accuracy of detection and interpretation of numerical data.\",\"PeriodicalId\":125445,\"journal\":{\"name\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GTSD54989.2022.9989301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTSD54989.2022.9989301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业厂房中,机器和测量仪器通过七段显示器显示。这台机器每天运转20多个小时。操作人员不能一直检查测量数据或状态。此外,人为错误会影响整体性能和时间。本研究旨在开发一个嵌入式系统,通过在线图像处理来解释七个分段显示的数据。在检测和解释过程中应用了卷积神经网络(CNN)。提出了一种基于CNN-GO的七段显示自动检测与判读系统。物联网设备拍摄测量仪器的七段显示器的照片并将图像发送到服务器。服务器使用CNN-GO将图像解释为数值数据。采用灰度扫描和重叠扫描,提高了数值数据的检测和解释精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seven-segment Display Automatic Detection and Interpretation System using CNN-GO
In industrial plants, machines and measuring instruments are displayed through a seven-segment display. The machine is operating for more than 20 hours/day. The operator cannot check measurement data or status all the time. In addition, human error affects overall performance and time. This research aims to develop an embedded system for interpreting data from seven segment displays through online image processing. CNN (Convolution Neural Network) is applied in the detection and interpretation process. This paper proposes seven-segment display automatic detection and interpretation system using CNN-GO. An IoT device takes the photo of the measuring instrument's seven-segment display and sends the image to the server. The server interprets an image to numerical data using CNN-GO. Grayscale and Overlapping scanning are applied to increase the accuracy of detection and interpretation of numerical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design a Fuel Battery Operation Model for a Car Application for Training Key Information Extraction from Mobile-Captured Vietnamese Receipt Images using Graph Neural Networks Approach Indoor Mobile Robot Positioning using Sensor Fusion A Steering Strategy for Self-Driving Automobile Systems Based on Lane-Line Detection The Improved Sliding Mode Observer for Sensorless Speed Control of Permanent Magnet Synchronous Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1