听力硬盘:用合成麦克风窃听的磁盘

Andrew Kwong, Wenyuan Xu, Kevin Fu
{"title":"听力硬盘:用合成麦克风窃听的磁盘","authors":"Andrew Kwong, Wenyuan Xu, Kevin Fu","doi":"10.1109/SP.2019.00008","DOIUrl":null,"url":null,"abstract":"Security conscious individuals may take considerable measures to disable sensors in order to protect their privacy. However, they often overlook the cyberphysical attack surface exposed by devices that were never designed to be sensors in the first place. Our research demonstrates that the mechanical components in magnetic hard disk drives behave as microphones with sufficient precision to extract and parse human speech. These unintentional microphones sense speech with high enough fidelity for the Shazam service to recognize a song recorded through the hard drive. This proof of concept attack sheds light on the possibility of invasion of privacy even in absence of traditional sensors. We also present defense mechanisms, such as the use of ultrasonic aliasing, that can mitigate acoustic eavesdropping by synthesized microphones in hard disk drives.","PeriodicalId":272713,"journal":{"name":"2019 IEEE Symposium on Security and Privacy (SP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Hard Drive of Hearing: Disks that Eavesdrop with a Synthesized Microphone\",\"authors\":\"Andrew Kwong, Wenyuan Xu, Kevin Fu\",\"doi\":\"10.1109/SP.2019.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security conscious individuals may take considerable measures to disable sensors in order to protect their privacy. However, they often overlook the cyberphysical attack surface exposed by devices that were never designed to be sensors in the first place. Our research demonstrates that the mechanical components in magnetic hard disk drives behave as microphones with sufficient precision to extract and parse human speech. These unintentional microphones sense speech with high enough fidelity for the Shazam service to recognize a song recorded through the hard drive. This proof of concept attack sheds light on the possibility of invasion of privacy even in absence of traditional sensors. We also present defense mechanisms, such as the use of ultrasonic aliasing, that can mitigate acoustic eavesdropping by synthesized microphones in hard disk drives.\",\"PeriodicalId\":272713,\"journal\":{\"name\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP.2019.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2019.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

有安全意识的个人可能会采取相当大的措施来禁用传感器,以保护他们的隐私。然而,他们往往忽视了设备暴露的网络物理攻击面,这些设备从一开始就没有被设计成传感器。我们的研究表明,磁性硬盘驱动器中的机械部件可以作为麦克风,具有足够的精度来提取和解析人类语言。这些无意中的麦克风以足够高的保真度感应语音,使Shazam服务能够识别通过硬盘录制的歌曲。这种概念验证攻击揭示了在没有传统传感器的情况下侵犯隐私的可能性。我们还提出了防御机制,例如使用超声波混叠,可以减轻硬盘驱动器中合成麦克风的声学窃听。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hard Drive of Hearing: Disks that Eavesdrop with a Synthesized Microphone
Security conscious individuals may take considerable measures to disable sensors in order to protect their privacy. However, they often overlook the cyberphysical attack surface exposed by devices that were never designed to be sensors in the first place. Our research demonstrates that the mechanical components in magnetic hard disk drives behave as microphones with sufficient precision to extract and parse human speech. These unintentional microphones sense speech with high enough fidelity for the Shazam service to recognize a song recorded through the hard drive. This proof of concept attack sheds light on the possibility of invasion of privacy even in absence of traditional sensors. We also present defense mechanisms, such as the use of ultrasonic aliasing, that can mitigate acoustic eavesdropping by synthesized microphones in hard disk drives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations CaSym: Cache Aware Symbolic Execution for Side Channel Detection and Mitigation PrivKV: Key-Value Data Collection with Local Differential Privacy Postcards from the Post-HTTP World: Amplification of HTTPS Vulnerabilities in the Web Ecosystem New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1