TapSense:结合自我报告模式和打字特征,用于基于智能手机的情绪检测

Surjya Ghosh, Niloy Ganguly, Bivas Mitra, Pradipta De
{"title":"TapSense:结合自我报告模式和打字特征,用于基于智能手机的情绪检测","authors":"Surjya Ghosh, Niloy Ganguly, Bivas Mitra, Pradipta De","doi":"10.1145/3098279.3098564","DOIUrl":null,"url":null,"abstract":"Typing based communication applications on smartphones, like WhatsApp, can induce emotional exchanges. The effects of an emotion in one session of communication can persist across sessions. In this work, we attempt automatic emotion detection by jointly modeling the typing characteristics, and the persistence of emotion. Typing characteristics, like speed, number of mistakes, special characters used, are inferred from typing sessions. Self reports recording emotion states after typing sessions capture persistence of emotion. We use this data to train a personalized machine learning model for multi-state emotion classification. We implemented an Android based smartphone application, called TapSense, that records typing related metadata, and uses a carefully designed Experience Sampling Method (ESM) to collect emotion self reports. We are able to classify four emotion states - happy, sad, stressed, and relaxed, with an average accuracy (AUCROC) of 84% for a group of 22 participants who installed and used TapSense for 3 weeks.","PeriodicalId":120153,"journal":{"name":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"TapSense: combining self-report patterns and typing characteristics for smartphone based emotion detection\",\"authors\":\"Surjya Ghosh, Niloy Ganguly, Bivas Mitra, Pradipta De\",\"doi\":\"10.1145/3098279.3098564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typing based communication applications on smartphones, like WhatsApp, can induce emotional exchanges. The effects of an emotion in one session of communication can persist across sessions. In this work, we attempt automatic emotion detection by jointly modeling the typing characteristics, and the persistence of emotion. Typing characteristics, like speed, number of mistakes, special characters used, are inferred from typing sessions. Self reports recording emotion states after typing sessions capture persistence of emotion. We use this data to train a personalized machine learning model for multi-state emotion classification. We implemented an Android based smartphone application, called TapSense, that records typing related metadata, and uses a carefully designed Experience Sampling Method (ESM) to collect emotion self reports. We are able to classify four emotion states - happy, sad, stressed, and relaxed, with an average accuracy (AUCROC) of 84% for a group of 22 participants who installed and used TapSense for 3 weeks.\",\"PeriodicalId\":120153,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3098279.3098564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3098279.3098564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

智能手机上基于打字的通信应用程序,比如WhatsApp,可以引发情感交流。一种情绪在一次交流中的影响可能会在不同的交流中持续存在。在这项工作中,我们尝试通过联合建模类型特征和情感的持久性来实现自动情感检测。打字特征,如速度、错误数量、使用的特殊字符,都是从打字会话中推断出来的。打字后记录情绪状态的自我报告捕捉到了情绪的持久性。我们使用这些数据来训练用于多状态情感分类的个性化机器学习模型。我们实现了一个基于Android的智能手机应用程序,名为TapSense,它记录打字相关的元数据,并使用精心设计的体验采样方法(ESM)来收集情绪自我报告。我们能够对四种情绪状态进行分类——快乐、悲伤、紧张和放松,在22名安装并使用TapSense 3周的参与者中,平均准确率(AUCROC)为84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TapSense: combining self-report patterns and typing characteristics for smartphone based emotion detection
Typing based communication applications on smartphones, like WhatsApp, can induce emotional exchanges. The effects of an emotion in one session of communication can persist across sessions. In this work, we attempt automatic emotion detection by jointly modeling the typing characteristics, and the persistence of emotion. Typing characteristics, like speed, number of mistakes, special characters used, are inferred from typing sessions. Self reports recording emotion states after typing sessions capture persistence of emotion. We use this data to train a personalized machine learning model for multi-state emotion classification. We implemented an Android based smartphone application, called TapSense, that records typing related metadata, and uses a carefully designed Experience Sampling Method (ESM) to collect emotion self reports. We are able to classify four emotion states - happy, sad, stressed, and relaxed, with an average accuracy (AUCROC) of 84% for a group of 22 participants who installed and used TapSense for 3 weeks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving pocket paint usability via material design compliance and internationalization & localization support on application level CapSoles: who is walking on what kind of floor? Exploring the feasibility of subliminal priming on smartphones Visual, auditory and haptic navigation feedbacks among older pedestrians Usability of different types of commercial selfie sticks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1