不平衡学习中基于数据集空间分布的过采样算法

Yiran Liu, Wanjiang Han, Xiaoxiang Wang, Qi Li
{"title":"不平衡学习中基于数据集空间分布的过采样算法","authors":"Yiran Liu, Wanjiang Han, Xiaoxiang Wang, Qi Li","doi":"10.1109/ICCCS49078.2020.9118573","DOIUrl":null,"url":null,"abstract":"Imbalance problem is widespread in machine learning. Most learning algorithms can’t get satisfied performance when they are applied on imbalance data sets, because they can be deteriorated by this problem easily. This paper proposed SDSMOTE method which captures the spatial distribution of imbalance data sets, and changes the tendency of learning algorithm by over sampling by oversampling according to the recognition difficulty. Experiments on 5 UCI data sets validate the effectiveness of this oversampling algorithm.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Oversampling Algorithm Based on Spatial Distribution of Data Sets for Imbalance Learning\",\"authors\":\"Yiran Liu, Wanjiang Han, Xiaoxiang Wang, Qi Li\",\"doi\":\"10.1109/ICCCS49078.2020.9118573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imbalance problem is widespread in machine learning. Most learning algorithms can’t get satisfied performance when they are applied on imbalance data sets, because they can be deteriorated by this problem easily. This paper proposed SDSMOTE method which captures the spatial distribution of imbalance data sets, and changes the tendency of learning algorithm by over sampling by oversampling according to the recognition difficulty. Experiments on 5 UCI data sets validate the effectiveness of this oversampling algorithm.\",\"PeriodicalId\":105556,\"journal\":{\"name\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS49078.2020.9118573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

不平衡问题是机器学习中普遍存在的问题。大多数学习算法在应用于不平衡数据集时都不能得到满意的性能,因为它们很容易被这个问题恶化。本文提出了SDSMOTE方法,该方法捕捉不平衡数据集的空间分布,并根据识别难度通过过采样改变学习算法的倾向。在5个UCI数据集上的实验验证了该过采样算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oversampling Algorithm Based on Spatial Distribution of Data Sets for Imbalance Learning
Imbalance problem is widespread in machine learning. Most learning algorithms can’t get satisfied performance when they are applied on imbalance data sets, because they can be deteriorated by this problem easily. This paper proposed SDSMOTE method which captures the spatial distribution of imbalance data sets, and changes the tendency of learning algorithm by over sampling by oversampling according to the recognition difficulty. Experiments on 5 UCI data sets validate the effectiveness of this oversampling algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Resource Dynamic Recombination and Its Technology Development of Space TT&C Equipment Automatic Arousal Detection Using Multi-model Deep Neural Network Internet Traffic Categories Demand Prediction to Support Dynamic QoS Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints Usage Intention of Internet of Vehicles Based on CAB Model: The Moderating Effect of Reference Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1