基于计算机视觉的地下矿山事故预防碰撞系统

Mohamed Imam, Karim Baïna, Youness Tabii, I. Benzakour, Youssef Adlaoui, El Mostafa Ressami, E. Abdelwahed
{"title":"基于计算机视觉的地下矿山事故预防碰撞系统","authors":"Mohamed Imam, Karim Baïna, Youness Tabii, I. Benzakour, Youssef Adlaoui, El Mostafa Ressami, E. Abdelwahed","doi":"10.1145/3571560.3571574","DOIUrl":null,"url":null,"abstract":"Underground prospecting operations are often characterized by critical safety issues mainly due to poor visibility and blind spots around large vehicles and equipment. This can result in vehicle-to-vehicle collisions, as well as vehicle-to-pedestrian or structural-element collisions, resulting in accidents. In this article, we discuss an anti-collision system for pedestrian identification in deep mines under the premise that we are looking to prevent collisions with moving machinery. This study presents the findings from testing an image processing module and sensory system based on deep learnig in the context of \"smart connected mine\" project.","PeriodicalId":143909,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anti-Collision System for Accident Prevention in Underground Mines using Computer Vision\",\"authors\":\"Mohamed Imam, Karim Baïna, Youness Tabii, I. Benzakour, Youssef Adlaoui, El Mostafa Ressami, E. Abdelwahed\",\"doi\":\"10.1145/3571560.3571574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underground prospecting operations are often characterized by critical safety issues mainly due to poor visibility and blind spots around large vehicles and equipment. This can result in vehicle-to-vehicle collisions, as well as vehicle-to-pedestrian or structural-element collisions, resulting in accidents. In this article, we discuss an anti-collision system for pedestrian identification in deep mines under the premise that we are looking to prevent collisions with moving machinery. This study presents the findings from testing an image processing module and sensory system based on deep learnig in the context of \\\"smart connected mine\\\" project.\",\"PeriodicalId\":143909,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571560.3571574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571560.3571574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

地下勘探作业往往存在严重的安全问题,主要原因是大型车辆和设备周围的能见度差和盲点。这可能导致车辆与车辆的碰撞,以及车辆与行人或结构元件的碰撞,从而导致事故。在本文中,我们在寻找防止与移动机械碰撞的前提下,讨论了一种用于深井行人识别的防碰撞系统。本研究介绍了在“智能互联矿山”项目背景下,基于深度学习的图像处理模块和传感系统的测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-Collision System for Accident Prevention in Underground Mines using Computer Vision
Underground prospecting operations are often characterized by critical safety issues mainly due to poor visibility and blind spots around large vehicles and equipment. This can result in vehicle-to-vehicle collisions, as well as vehicle-to-pedestrian or structural-element collisions, resulting in accidents. In this article, we discuss an anti-collision system for pedestrian identification in deep mines under the premise that we are looking to prevent collisions with moving machinery. This study presents the findings from testing an image processing module and sensory system based on deep learnig in the context of "smart connected mine" project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A semantic real-time activity recognition system for sequential procedures in vocational learning An Effective Implementation of Detection and Retrieval Property of Episodic Memory Measuring Airport Service Quality Using Machine Learning Algorithms Prospects for the use of algebraic rings to describe the operation of convolutional neural networks Optimizing Ethanol Production in Escherichia Coli Using a Hybrid of Particle Swarm Optimization and Artificial Bee Colony
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1