R. Maaß, S. Petegem, H. Swygenhoven, D. Grolimund, P. Derlet, C. Volkert
{"title":"微压缩实验中现场时间分辨劳厄衍射","authors":"R. Maaß, S. Petegem, H. Swygenhoven, D. Grolimund, P. Derlet, C. Volkert","doi":"10.1142/S1793617908000252","DOIUrl":null,"url":null,"abstract":"We present in situ and ex situ Laue micro-diffraction experiments on micron-sized single crystal pillars. We show that the focused ion beam technique introduces measurable damage in Si pillars. The dynamics of the Laue patterns of Au pillars demonstrate the occurrence of crystal rotation and strengthening is explained by plasticity starting on a slip system that is geometrically not predicted but selected because of the character of the pre-existing strain gradient.","PeriodicalId":166807,"journal":{"name":"Advances in Synchrotron Radiation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IN SITU TIME RESOLVED LAUE DIFFRACTION DURING MICRO-COMPRESSION EXPERIMENTS\",\"authors\":\"R. Maaß, S. Petegem, H. Swygenhoven, D. Grolimund, P. Derlet, C. Volkert\",\"doi\":\"10.1142/S1793617908000252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in situ and ex situ Laue micro-diffraction experiments on micron-sized single crystal pillars. We show that the focused ion beam technique introduces measurable damage in Si pillars. The dynamics of the Laue patterns of Au pillars demonstrate the occurrence of crystal rotation and strengthening is explained by plasticity starting on a slip system that is geometrically not predicted but selected because of the character of the pre-existing strain gradient.\",\"PeriodicalId\":166807,\"journal\":{\"name\":\"Advances in Synchrotron Radiation\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Synchrotron Radiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793617908000252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Synchrotron Radiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793617908000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IN SITU TIME RESOLVED LAUE DIFFRACTION DURING MICRO-COMPRESSION EXPERIMENTS
We present in situ and ex situ Laue micro-diffraction experiments on micron-sized single crystal pillars. We show that the focused ion beam technique introduces measurable damage in Si pillars. The dynamics of the Laue patterns of Au pillars demonstrate the occurrence of crystal rotation and strengthening is explained by plasticity starting on a slip system that is geometrically not predicted but selected because of the character of the pre-existing strain gradient.