基于混合模型的独立于主体的自适应瞳孔自动眼动跟踪标定

Thomas B. Kinsman, J. Pelz
{"title":"基于混合模型的独立于主体的自适应瞳孔自动眼动跟踪标定","authors":"Thomas B. Kinsman, J. Pelz","doi":"10.1109/IVMSPW.2011.5970369","DOIUrl":null,"url":null,"abstract":"This paper describes the initial pre-processing steps used to follow the motions of the human eye in an eye tracking application. The central method models each pixel as a combination of either: a dark pupil pixel, bright highlight pixel, or a neutral pixel. Portable eye tracking involves tracking a subject's pupil over the course of a study. This paper describes very preliminary results from using a mixture model as a processing stage. Technical issues of using a mixture model are discussed. The pixel classifications from the mixture model were fed into a naïve Bayes pupil tracker. Only low-level information is used for pupil identification. No motion tracking is performed, no belief propagation is performed, and no convolutions are computed. The algorithm is well positioned for parallel implementations. The solution surmounts several technical challenges, and initial results are unexpectedly accurate. The technique shows good promise for incorporation into a system for automatic eye-to-scene calibration.","PeriodicalId":405588,"journal":{"name":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a subject-independent adaptive pupil tracker for automatic eye tracking calibration using a mixture model\",\"authors\":\"Thomas B. Kinsman, J. Pelz\",\"doi\":\"10.1109/IVMSPW.2011.5970369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the initial pre-processing steps used to follow the motions of the human eye in an eye tracking application. The central method models each pixel as a combination of either: a dark pupil pixel, bright highlight pixel, or a neutral pixel. Portable eye tracking involves tracking a subject's pupil over the course of a study. This paper describes very preliminary results from using a mixture model as a processing stage. Technical issues of using a mixture model are discussed. The pixel classifications from the mixture model were fed into a naïve Bayes pupil tracker. Only low-level information is used for pupil identification. No motion tracking is performed, no belief propagation is performed, and no convolutions are computed. The algorithm is well positioned for parallel implementations. The solution surmounts several technical challenges, and initial results are unexpectedly accurate. The technique shows good promise for incorporation into a system for automatic eye-to-scene calibration.\",\"PeriodicalId\":405588,\"journal\":{\"name\":\"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2011.5970369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2011.5970369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了在眼动追踪应用程序中用于跟踪人眼运动的初始预处理步骤。中心方法将每个像素建模为:暗瞳像素,亮高光像素或中性像素的组合。便携式眼动追踪技术包括在研究过程中跟踪受试者的瞳孔。本文描述了使用混合模型作为处理阶段的非常初步的结果。讨论了使用混合模型的技术问题。混合模型的像素分类输入naïve贝叶斯瞳孔跟踪器。只有低级别的信息被用于瞳孔识别。不执行运动跟踪,不执行信念传播,也不计算卷积。该算法很适合并行实现。该解决方案克服了几个技术挑战,并且最初的结果出乎意料地准确。该技术在眼到场景自动校准系统中显示出良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a subject-independent adaptive pupil tracker for automatic eye tracking calibration using a mixture model
This paper describes the initial pre-processing steps used to follow the motions of the human eye in an eye tracking application. The central method models each pixel as a combination of either: a dark pupil pixel, bright highlight pixel, or a neutral pixel. Portable eye tracking involves tracking a subject's pupil over the course of a study. This paper describes very preliminary results from using a mixture model as a processing stage. Technical issues of using a mixture model are discussed. The pixel classifications from the mixture model were fed into a naïve Bayes pupil tracker. Only low-level information is used for pupil identification. No motion tracking is performed, no belief propagation is performed, and no convolutions are computed. The algorithm is well positioned for parallel implementations. The solution surmounts several technical challenges, and initial results are unexpectedly accurate. The technique shows good promise for incorporation into a system for automatic eye-to-scene calibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and discussion of open issues in perceptual video coding based on image analysis and completion Classification with invariant scattering representations Detection of repetitive patterns in near regular texture images Despeckling trilateral filter A novel multifocus image fusion scheme based on pixel significance using wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1