高温对NSM FRP筋/带与混凝土粘结的影响

A. Palmieri, S. Matthys, L. Taerwe
{"title":"高温对NSM FRP筋/带与混凝土粘结的影响","authors":"A. Palmieri, S. Matthys, L. Taerwe","doi":"10.14359/51682462","DOIUrl":null,"url":null,"abstract":"The use of near surface mounted (NSM) fiber reinforced polymers (FRPs) is being increasingly recognized as a valid technique strengthening of concrete members. In case of elevated temperature or fire exposure however, the bond between the bars and the concrete will be lost very quickly due to the adhesive's low glass transition temperature. Although recent studies have shown that the fire endurance of appropriately designed and insulated FRP strengthened RC members is satisfactory, the performance of FRP strengthening systems at high temperature remains largely unknown. To study the bond behaviour at elevated temperature between the NSM FRP bars and concrete a series of 18 double bond shear tests were performed at Ghent University. Results show that the failure load of NSM FRP strengthened concrete structures and the bond strength are influenced at values of temperature equal to or beyond the glass transition temperature. Failure mode changed by increasing the temperature.","PeriodicalId":375782,"journal":{"name":"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Influence of High Temperature on Bond between NSM FRP Bars/Strips and Concrete\",\"authors\":\"A. Palmieri, S. Matthys, L. Taerwe\",\"doi\":\"10.14359/51682462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of near surface mounted (NSM) fiber reinforced polymers (FRPs) is being increasingly recognized as a valid technique strengthening of concrete members. In case of elevated temperature or fire exposure however, the bond between the bars and the concrete will be lost very quickly due to the adhesive's low glass transition temperature. Although recent studies have shown that the fire endurance of appropriately designed and insulated FRP strengthened RC members is satisfactory, the performance of FRP strengthening systems at high temperature remains largely unknown. To study the bond behaviour at elevated temperature between the NSM FRP bars and concrete a series of 18 double bond shear tests were performed at Ghent University. Results show that the failure load of NSM FRP strengthened concrete structures and the bond strength are influenced at values of temperature equal to or beyond the glass transition temperature. Failure mode changed by increasing the temperature.\",\"PeriodicalId\":375782,\"journal\":{\"name\":\"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/51682462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/51682462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

近表面安装(NSM)纤维增强聚合物(frp)作为一种有效的混凝土构件加固技术正日益得到人们的认可。然而,在温度升高或火灾的情况下,由于胶粘剂的玻璃化转变温度较低,钢筋与混凝土之间的粘合将很快失去。虽然最近的研究表明,适当设计和隔热FRP增强RC构件的耐火性能是令人满意的,FRP增强系统在高温下的性能仍然很大程度上未知。为了研究NSM FRP筋与混凝土在高温下的粘结行为,在根特大学进行了18次双键剪切试验。结果表明:NSM FRP增强混凝土结构的破坏荷载和粘结强度在等于或超过玻璃化转变温度时受到影响;温度升高会改变失效模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of High Temperature on Bond between NSM FRP Bars/Strips and Concrete
The use of near surface mounted (NSM) fiber reinforced polymers (FRPs) is being increasingly recognized as a valid technique strengthening of concrete members. In case of elevated temperature or fire exposure however, the bond between the bars and the concrete will be lost very quickly due to the adhesive's low glass transition temperature. Although recent studies have shown that the fire endurance of appropriately designed and insulated FRP strengthened RC members is satisfactory, the performance of FRP strengthening systems at high temperature remains largely unknown. To study the bond behaviour at elevated temperature between the NSM FRP bars and concrete a series of 18 double bond shear tests were performed at Ghent University. Results show that the failure load of NSM FRP strengthened concrete structures and the bond strength are influenced at values of temperature equal to or beyond the glass transition temperature. Failure mode changed by increasing the temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NSM FRP Strips Shear Strength Contribution to a RC Beam: A Design Procedure Bond-Slip Relationship for Externally-Bonded FRP with Limited Bond Length An Experimental Study on Improving Anchor Performance for CFRP Tendons Effects of Freeze-Thaw Cycling and Sustained Load on FRP-Concrete Interface ACI Design Guide for Flexural and Shear Strengthening of URM Walls with FRP Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1