微阵列数据缺失值的精确鲁棒估计:最小绝对偏差估算

Yi Cao, K. Poh
{"title":"微阵列数据缺失值的精确鲁棒估计:最小绝对偏差估算","authors":"Yi Cao, K. Poh","doi":"10.1109/ICMLA.2006.11","DOIUrl":null,"url":null,"abstract":"Microarray experiments often produce missing expression values due to various reasons. Accurate and robust estimation methods of missing values are needed since many algorithms and statistical analysis require a complete data set. In this paper, novel imputation methods based on least absolute deviation estimate, referred to as LADimpute, are proposed to estimate missing entries in microarray data. The proposed LADimpute method takes into consideration the local similarity structures in addition to employment of least absolute deviation estimate. Once those genes similar to the target gene with missing values are selected based on some metric, all missing values in the target gene can be estimated by the linear combination of the similar genes simultaneously. In our experiments, the proposed LADimpute method exhibits its accurate and robust performance when compared to other methods over different datasets, changing missing rates and various noise levels","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Accurate and Robust Missing Value Estimation for Microarray Data: Least Absolute Deviation Imputation\",\"authors\":\"Yi Cao, K. Poh\",\"doi\":\"10.1109/ICMLA.2006.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray experiments often produce missing expression values due to various reasons. Accurate and robust estimation methods of missing values are needed since many algorithms and statistical analysis require a complete data set. In this paper, novel imputation methods based on least absolute deviation estimate, referred to as LADimpute, are proposed to estimate missing entries in microarray data. The proposed LADimpute method takes into consideration the local similarity structures in addition to employment of least absolute deviation estimate. Once those genes similar to the target gene with missing values are selected based on some metric, all missing values in the target gene can be estimated by the linear combination of the similar genes simultaneously. In our experiments, the proposed LADimpute method exhibits its accurate and robust performance when compared to other methods over different datasets, changing missing rates and various noise levels\",\"PeriodicalId\":297071,\"journal\":{\"name\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2006.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于各种原因,微阵列实验经常产生缺失的表达值。由于许多算法和统计分析都需要完整的数据集,因此需要准确而稳健的缺失值估计方法。本文提出了一种基于最小绝对偏差估计(LADimpute)的微阵列数据缺失项估计方法。提出的LADimpute方法除了采用最小绝对偏差估计外,还考虑了局部相似结构。一旦根据一定的度量选择出与目标基因相似但缺失值的基因,就可以同时用相似基因的线性组合来估计目标基因中所有缺失值。在我们的实验中,与其他方法相比,所提出的LADimpute方法在不同的数据集、不同的缺失率和不同的噪声水平上表现出了准确和鲁棒的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Accurate and Robust Missing Value Estimation for Microarray Data: Least Absolute Deviation Imputation
Microarray experiments often produce missing expression values due to various reasons. Accurate and robust estimation methods of missing values are needed since many algorithms and statistical analysis require a complete data set. In this paper, novel imputation methods based on least absolute deviation estimate, referred to as LADimpute, are proposed to estimate missing entries in microarray data. The proposed LADimpute method takes into consideration the local similarity structures in addition to employment of least absolute deviation estimate. Once those genes similar to the target gene with missing values are selected based on some metric, all missing values in the target gene can be estimated by the linear combination of the similar genes simultaneously. In our experiments, the proposed LADimpute method exhibits its accurate and robust performance when compared to other methods over different datasets, changing missing rates and various noise levels
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Heuristic for Discovering Multiple Ill-Defined Attributes in Datasets Robust Model Selection Using Cross Validation: A Simple Iterative Technique for Developing Robust Gene Signatures in Biomedical Genomics Applications Detecting Web Content Function Using Generalized Hidden Markov Model Naive Bayes Classification Given Probability Estimation Trees A New Machine Learning Technique Based on Straight Line Segments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1