不稳定视频中的智能视觉跟踪

Kamlesh Verma, D. Ghosh, Harsh Saxena, Himanshu Singh, Rajeev Marathe, Avnish Kumar
{"title":"不稳定视频中的智能视觉跟踪","authors":"Kamlesh Verma, D. Ghosh, Harsh Saxena, Himanshu Singh, Rajeev Marathe, Avnish Kumar","doi":"10.4018/ijncr.2020070104","DOIUrl":null,"url":null,"abstract":"Visual tracking requirement is increasing day by day due to the availability of high-performance digital cameras at low prices. Visual tracking becomes a complex problem when cameras suffer with unwanted and unintentional motion, resulting in motion-blurred unstabilized video. The problem in hand becomes more challenging when the target of interest is to be detected automatically in this unstabilized video. This paper presents a comprehensive single intelligent solution for these problems. The proposed algorithm auto-detects the camera motion, filters out the unintentional motion while stabilizing the video keeping intentional motion only using speeded-up robust features (SURF) technique. Motion smear due to unstabilization is also removed, providing sharp stabilized video output with video quality enhancement of up to 20dB. Gabor filter is used innovatively for auto-detection of target of interest in each stabilized frame. Then the target is tracked using SURF method.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Visual Tracking in Unstabilized Videos\",\"authors\":\"Kamlesh Verma, D. Ghosh, Harsh Saxena, Himanshu Singh, Rajeev Marathe, Avnish Kumar\",\"doi\":\"10.4018/ijncr.2020070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual tracking requirement is increasing day by day due to the availability of high-performance digital cameras at low prices. Visual tracking becomes a complex problem when cameras suffer with unwanted and unintentional motion, resulting in motion-blurred unstabilized video. The problem in hand becomes more challenging when the target of interest is to be detected automatically in this unstabilized video. This paper presents a comprehensive single intelligent solution for these problems. The proposed algorithm auto-detects the camera motion, filters out the unintentional motion while stabilizing the video keeping intentional motion only using speeded-up robust features (SURF) technique. Motion smear due to unstabilization is also removed, providing sharp stabilized video output with video quality enhancement of up to 20dB. Gabor filter is used innovatively for auto-detection of target of interest in each stabilized frame. Then the target is tracked using SURF method.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijncr.2020070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2020070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于高性能、低价格的数码相机的出现,对视觉跟踪的需求日益增加。当摄像机遭受不必要和无意的运动时,视觉跟踪成为一个复杂的问题,导致运动模糊的不稳定视频。当在这个不稳定的视频中自动检测感兴趣的目标时,手头的问题变得更具挑战性。本文针对这些问题提出了一种综合的单一智能解决方案。该算法利用加速鲁棒特征(SURF)技术自动检测摄像机运动,过滤掉无意运动,同时稳定视频,保持有意运动。由于不稳定的运动涂抹也被消除,提供清晰稳定的视频输出,视频质量提高高达20dB。创新地使用Gabor滤波器在每个稳定帧中自动检测感兴趣的目标。然后用SURF方法对目标进行跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Visual Tracking in Unstabilized Videos
Visual tracking requirement is increasing day by day due to the availability of high-performance digital cameras at low prices. Visual tracking becomes a complex problem when cameras suffer with unwanted and unintentional motion, resulting in motion-blurred unstabilized video. The problem in hand becomes more challenging when the target of interest is to be detected automatically in this unstabilized video. This paper presents a comprehensive single intelligent solution for these problems. The proposed algorithm auto-detects the camera motion, filters out the unintentional motion while stabilizing the video keeping intentional motion only using speeded-up robust features (SURF) technique. Motion smear due to unstabilization is also removed, providing sharp stabilized video output with video quality enhancement of up to 20dB. Gabor filter is used innovatively for auto-detection of target of interest in each stabilized frame. Then the target is tracked using SURF method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1