片上系统:限制是什么?

E. Roza
{"title":"片上系统:限制是什么?","authors":"E. Roza","doi":"10.1049/ECEJ:20010602","DOIUrl":null,"url":null,"abstract":"A quantitative comparison is made between the computational requirements of typical systems-on-chip and the computational capabilities of silicon. This is illustrated by the evolution of TV and other video appliances on the one hand and the progress of silicon technology on the other. As a basic benchmark figure the concept of the intrinsic computational efficiency (ICE) of silicon is introduced, and this is compared with the computational efficiency of commercial microprocessors and digital signal processors. It is shown that processors designed by application-specific architectural synthesis can approximate the ICE limit and that they exceed the computational efficiency of general-purpose devices by several orders of magnitude. To close the gap between flexibility and efficiency, the silicon system platform concept is introduced. Finally, it is shown how Moore's law of exponential growth together with Claasen's law of logarithmic usefulness make the perceived progression in systems a linear function of time.","PeriodicalId":127784,"journal":{"name":"Electronics & Communication Engineering Journal","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Systems-on-chip: what are the limits?\",\"authors\":\"E. Roza\",\"doi\":\"10.1049/ECEJ:20010602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantitative comparison is made between the computational requirements of typical systems-on-chip and the computational capabilities of silicon. This is illustrated by the evolution of TV and other video appliances on the one hand and the progress of silicon technology on the other. As a basic benchmark figure the concept of the intrinsic computational efficiency (ICE) of silicon is introduced, and this is compared with the computational efficiency of commercial microprocessors and digital signal processors. It is shown that processors designed by application-specific architectural synthesis can approximate the ICE limit and that they exceed the computational efficiency of general-purpose devices by several orders of magnitude. To close the gap between flexibility and efficiency, the silicon system platform concept is introduced. Finally, it is shown how Moore's law of exponential growth together with Claasen's law of logarithmic usefulness make the perceived progression in systems a linear function of time.\",\"PeriodicalId\":127784,\"journal\":{\"name\":\"Electronics & Communication Engineering Journal\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics & Communication Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ECEJ:20010602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics & Communication Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ECEJ:20010602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

对典型片上系统的计算需求与硅的计算能力进行了定量比较。一方面是电视和其他视频设备的发展,另一方面是硅技术的进步,说明了这一点。作为一个基本基准,引入了硅的固有计算效率(ICE)的概念,并将其与商用微处理器和数字信号处理器的计算效率进行了比较。结果表明,通过特定应用的体系结构综合设计的处理器可以接近ICE极限,并且它们的计算效率超过了通用设备的几个数量级。为了缩小灵活性和效率之间的差距,引入了硅系统平台的概念。最后,它显示了摩尔的指数增长定律与克拉森的对数有用性定律如何使系统的感知进程成为时间的线性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systems-on-chip: what are the limits?
A quantitative comparison is made between the computational requirements of typical systems-on-chip and the computational capabilities of silicon. This is illustrated by the evolution of TV and other video appliances on the one hand and the progress of silicon technology on the other. As a basic benchmark figure the concept of the intrinsic computational efficiency (ICE) of silicon is introduced, and this is compared with the computational efficiency of commercial microprocessors and digital signal processors. It is shown that processors designed by application-specific architectural synthesis can approximate the ICE limit and that they exceed the computational efficiency of general-purpose devices by several orders of magnitude. To close the gap between flexibility and efficiency, the silicon system platform concept is introduced. Finally, it is shown how Moore's law of exponential growth together with Claasen's law of logarithmic usefulness make the perceived progression in systems a linear function of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing the delivery of digital content over the Internet Security for mobility Mobile agent security Secure mobile commerce Security issues for downloaded code in mobile phones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1