{"title":"基于卷的网络DoS攻击的基本限制","authors":"Xinzhe Fu, E. Modiano","doi":"10.1145/3393691.3394190","DOIUrl":null,"url":null,"abstract":"Volume-based network denial-of-service (DoS) attacks refer to a class of cyber attacks where an adversary seeks to block user traffic from service by sending adversarial traffic that reduces the available user capacity. In this paper, we explore the fundamental limits of volume-based network DoS attacks by studying the minimum required rate of adversarial traffic and investigating optimal attack strategies. We start our analysis with single-hop networks where user traffic is routed to servers following the Join-the-Shortest-Queue (JSQ) rule. Given the service rates of servers and arrival rates of user traffic, we first characterize the feasibility region of the attack and show that the attack is feasible if and only if the rate of the adversarial traffic lies in the region. We then design an attack strategy that is (i).optimal: it guarantees the success of the attack whenever the adversarial traffic rate lies in the feasibility region and (ii).oblivious: it does not rely on knowledge of service rates or user traffic rates. Finally, we extend our results on the feasibility region of the attack and the optimal attack strategy to multi-hop networks that employ Back-pressure (Max-Weight) routing. At a higher level, this paper addresses a class of dual problems of stochastic network stability, i.e., how to optimally de-stabilize a network.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Limits of Volume-based Network DoS Attacks\",\"authors\":\"Xinzhe Fu, E. Modiano\",\"doi\":\"10.1145/3393691.3394190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volume-based network denial-of-service (DoS) attacks refer to a class of cyber attacks where an adversary seeks to block user traffic from service by sending adversarial traffic that reduces the available user capacity. In this paper, we explore the fundamental limits of volume-based network DoS attacks by studying the minimum required rate of adversarial traffic and investigating optimal attack strategies. We start our analysis with single-hop networks where user traffic is routed to servers following the Join-the-Shortest-Queue (JSQ) rule. Given the service rates of servers and arrival rates of user traffic, we first characterize the feasibility region of the attack and show that the attack is feasible if and only if the rate of the adversarial traffic lies in the region. We then design an attack strategy that is (i).optimal: it guarantees the success of the attack whenever the adversarial traffic rate lies in the feasibility region and (ii).oblivious: it does not rely on knowledge of service rates or user traffic rates. Finally, we extend our results on the feasibility region of the attack and the optimal attack strategy to multi-hop networks that employ Back-pressure (Max-Weight) routing. At a higher level, this paper addresses a class of dual problems of stochastic network stability, i.e., how to optimally de-stabilize a network.\",\"PeriodicalId\":188517,\"journal\":{\"name\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393691.3394190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于容量的网络拒绝服务(DoS)攻击是一类网络攻击,攻击者通过发送减少可用用户容量的对抗性流量来阻止用户访问服务。在本文中,我们通过研究对抗流量的最小要求率和研究最优攻击策略来探索基于容量的网络DoS攻击的基本限制。我们从单跳网络开始分析,其中用户流量按照最短队列连接(join -the- short - queue, JSQ)规则路由到服务器。给定服务器的服务率和用户流量的到达率,我们首先描述了攻击的可行性区域,并证明了当且仅当敌对流量的速率位于该区域时,攻击是可行的。然后,我们设计了一种攻击策略,它是(i).最优的:它保证攻击的成功,无论敌对流量率在可行性区域和(ii).无关的:它不依赖于服务费率或用户流量率的知识。最后,我们将攻击的可行性区域和最优攻击策略扩展到采用背压(Max-Weight)路由的多跳网络。在更高的层次上,本文讨论了一类随机网络稳定性的对偶问题,即如何最优解稳网络。
Fundamental Limits of Volume-based Network DoS Attacks
Volume-based network denial-of-service (DoS) attacks refer to a class of cyber attacks where an adversary seeks to block user traffic from service by sending adversarial traffic that reduces the available user capacity. In this paper, we explore the fundamental limits of volume-based network DoS attacks by studying the minimum required rate of adversarial traffic and investigating optimal attack strategies. We start our analysis with single-hop networks where user traffic is routed to servers following the Join-the-Shortest-Queue (JSQ) rule. Given the service rates of servers and arrival rates of user traffic, we first characterize the feasibility region of the attack and show that the attack is feasible if and only if the rate of the adversarial traffic lies in the region. We then design an attack strategy that is (i).optimal: it guarantees the success of the attack whenever the adversarial traffic rate lies in the feasibility region and (ii).oblivious: it does not rely on knowledge of service rates or user traffic rates. Finally, we extend our results on the feasibility region of the attack and the optimal attack strategy to multi-hop networks that employ Back-pressure (Max-Weight) routing. At a higher level, this paper addresses a class of dual problems of stochastic network stability, i.e., how to optimally de-stabilize a network.