噪声20题问题的异步分散算法

Theodoros Tsiligkaridis
{"title":"噪声20题问题的异步分散算法","authors":"Theodoros Tsiligkaridis","doi":"10.1109/ISIT.2016.7541789","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of adaptively searching for an unknown target using multiple agents connected through a time-varying network topology. Agents are equipped with sensors capable of fast information processing, and we propose an asynchronous decentralized algorithm for controlling their search based on noisy observations. We propose asynchronous decentralized algorithms for adaptive query-based search that combine the Bayesian bisection method and social learning. Under standard assumptions on the time-varying network dynamics, we prove convergence to correct consensus on the value of the parameter as the number of iterations grow. Our results establish that stability and consistency can be maintained even with one-way updating and randomized pairwise averaging, thus providing a scalable low complexity alternative to the synchronous decentralized estimation algorithms studied in previous works. We illustrate the effectiveness and robustness of our algorithm for random network topologies.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Asynchronous decentralized algorithms for the noisy 20 questions problem\",\"authors\":\"Theodoros Tsiligkaridis\",\"doi\":\"10.1109/ISIT.2016.7541789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of adaptively searching for an unknown target using multiple agents connected through a time-varying network topology. Agents are equipped with sensors capable of fast information processing, and we propose an asynchronous decentralized algorithm for controlling their search based on noisy observations. We propose asynchronous decentralized algorithms for adaptive query-based search that combine the Bayesian bisection method and social learning. Under standard assumptions on the time-varying network dynamics, we prove convergence to correct consensus on the value of the parameter as the number of iterations grow. Our results establish that stability and consistency can be maintained even with one-way updating and randomized pairwise averaging, thus providing a scalable low complexity alternative to the synchronous decentralized estimation algorithms studied in previous works. We illustrate the effectiveness and robustness of our algorithm for random network topologies.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了通过时变网络拓扑结构连接的多智能体自适应搜索未知目标的问题。智能体配备了能够快速处理信息的传感器,我们提出了一种异步分散算法来控制基于噪声观测的智能体搜索。我们提出了异步分散的自适应查询搜索算法,该算法结合了贝叶斯二分法和社会学习。在时变网络动力学的标准假设下,我们证明了随着迭代次数的增加参数值的收敛性。我们的研究结果表明,即使使用单向更新和随机两两平均也可以保持稳定性和一致性,从而为先前研究的同步分散估计算法提供了一种可扩展的低复杂度替代方案。我们说明了我们的算法对随机网络拓扑的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asynchronous decentralized algorithms for the noisy 20 questions problem
This paper studies the problem of adaptively searching for an unknown target using multiple agents connected through a time-varying network topology. Agents are equipped with sensors capable of fast information processing, and we propose an asynchronous decentralized algorithm for controlling their search based on noisy observations. We propose asynchronous decentralized algorithms for adaptive query-based search that combine the Bayesian bisection method and social learning. Under standard assumptions on the time-varying network dynamics, we prove convergence to correct consensus on the value of the parameter as the number of iterations grow. Our results establish that stability and consistency can be maintained even with one-way updating and randomized pairwise averaging, thus providing a scalable low complexity alternative to the synchronous decentralized estimation algorithms studied in previous works. We illustrate the effectiveness and robustness of our algorithm for random network topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
String concatenation construction for Chebyshev permutation channel codes Cyclically symmetric entropy inequalities Near-capacity protograph doubly-generalized LDPC codes with block thresholds On the capacity of a class of dual-band interference channels Distributed detection over connected networks via one-bit quantizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1