COVID-19 α:通过推文分析的COVID-19症状互动时空可视化

Biddut Sarker Bijoy, Syeda Jannatus Saba, Souvik Sarkar, Md. Saiful Islam, Sheikh Rabiul Islam, M. R. Amin, Shubhra (Santu) Karmaker
{"title":"COVID-19 α:通过推文分析的COVID-19症状互动时空可视化","authors":"Biddut Sarker Bijoy, Syeda Jannatus Saba, Souvik Sarkar, Md. Saiful Islam, Sheikh Rabiul Islam, M. R. Amin, Shubhra (Santu) Karmaker","doi":"10.1145/3397482.3450715","DOIUrl":null,"url":null,"abstract":"In this demo, we focus on analyzing COVID-19 related symptoms across the globe reported through tweets by building an interactive spatio-temporal visualization tool, i.e., COVID19α. Using around 462 million tweets collected over a span of six months, COVID19α provides three different types of visualization tools: 1) Spatial Visualization with a focus on visualizing COVID-19 symptoms across different geographic locations; 2) Temporal Visualization with a focus on visualizing the evolution of COVID-19 symptoms over time for a particular geographic location; and 3) Spatio-Temporal Visualization with a focus on combining both spatial and temporal analysis to provide comparative visualizations between two (or more) symptoms across time and space. We believe that health professionals, scientists, and policymakers will be able to leverage this interactive tool to devise better and targeted health intervention policies. Our developed interactive visualization tool is publicly available at https://bijoy-sust.github.io/Covid19/.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"COVID19α: Interactive Spatio-Temporal Visualization of COVID-19 Symptoms through Tweet Analysis\",\"authors\":\"Biddut Sarker Bijoy, Syeda Jannatus Saba, Souvik Sarkar, Md. Saiful Islam, Sheikh Rabiul Islam, M. R. Amin, Shubhra (Santu) Karmaker\",\"doi\":\"10.1145/3397482.3450715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demo, we focus on analyzing COVID-19 related symptoms across the globe reported through tweets by building an interactive spatio-temporal visualization tool, i.e., COVID19α. Using around 462 million tweets collected over a span of six months, COVID19α provides three different types of visualization tools: 1) Spatial Visualization with a focus on visualizing COVID-19 symptoms across different geographic locations; 2) Temporal Visualization with a focus on visualizing the evolution of COVID-19 symptoms over time for a particular geographic location; and 3) Spatio-Temporal Visualization with a focus on combining both spatial and temporal analysis to provide comparative visualizations between two (or more) symptoms across time and space. We believe that health professionals, scientists, and policymakers will be able to leverage this interactive tool to devise better and targeted health intervention policies. Our developed interactive visualization tool is publicly available at https://bijoy-sust.github.io/Covid19/.\",\"PeriodicalId\":216190,\"journal\":{\"name\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397482.3450715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本次演示中,我们通过构建交互式时空可视化工具COVID-19 α,重点分析全球范围内通过推特报告的COVID-19相关症状。COVID-19 α利用在六个月内收集的约4.62亿条推文,提供了三种不同类型的可视化工具:1)空间可视化,重点是可视化不同地理位置的COVID-19症状;2)时间可视化,重点是可视化特定地理位置的COVID-19症状随时间的演变;3)时空可视化,重点是将空间和时间分析相结合,提供跨时间和空间的两种(或多种)症状之间的比较可视化。我们相信,卫生专业人员、科学家和政策制定者将能够利用这一互动工具来制定更好的、有针对性的卫生干预政策。我们开发的交互式可视化工具可在https://bijoy-sust.github.io/Covid19/上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID19α: Interactive Spatio-Temporal Visualization of COVID-19 Symptoms through Tweet Analysis
In this demo, we focus on analyzing COVID-19 related symptoms across the globe reported through tweets by building an interactive spatio-temporal visualization tool, i.e., COVID19α. Using around 462 million tweets collected over a span of six months, COVID19α provides three different types of visualization tools: 1) Spatial Visualization with a focus on visualizing COVID-19 symptoms across different geographic locations; 2) Temporal Visualization with a focus on visualizing the evolution of COVID-19 symptoms over time for a particular geographic location; and 3) Spatio-Temporal Visualization with a focus on combining both spatial and temporal analysis to provide comparative visualizations between two (or more) symptoms across time and space. We believe that health professionals, scientists, and policymakers will be able to leverage this interactive tool to devise better and targeted health intervention policies. Our developed interactive visualization tool is publicly available at https://bijoy-sust.github.io/Covid19/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Over-sketching Operation to Realize Geometrical and Topological Editing across Multiple Objects in Sketch-based CAD Interface TIEVis: a Visual Analytics Dashboard for Temporal Information Extracted from Clinical Reports SynZ: Enhanced Synthetic Dataset for Training UI Element Detectors User-Controlled Content Translation in Social Media VisRec: A Hands-on Tutorial on Deep Learning for Visual Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1