利用概率资源模型提高gpu源级时序仿真的精度

Christoph Gerum, W. Rosenstiel, O. Bringmann
{"title":"利用概率资源模型提高gpu源级时序仿真的精度","authors":"Christoph Gerum, W. Rosenstiel, O. Bringmann","doi":"10.1109/SAMOS.2015.7363655","DOIUrl":null,"url":null,"abstract":"After their success in the high performance and desktop market, Graphic Processing Units (GPUs), that can be used for general purpose computing are introduced for embedded systems on a chip (SOCs). Due to some advanced architectural features, like massive simultaneous multithreading, static performance analysis and high-level timing simulation are difficult to apply to code running on these systems. This paper extends a method for performance simulation of GPUs. The method uses automated performance annotations in the application's OpenCL C source code, and an extended performance model for derivation of a kernels runtime from metrics produced by the execution of annotated kernels. The final results are then generated using a probabilistic resource conflict model. The model reaches an accuracy of 90% on most test cases and delivers a higher average accuracy than previous methods.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving accuracy of source level timing simulation for GPUs using a probabilistic resource model\",\"authors\":\"Christoph Gerum, W. Rosenstiel, O. Bringmann\",\"doi\":\"10.1109/SAMOS.2015.7363655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After their success in the high performance and desktop market, Graphic Processing Units (GPUs), that can be used for general purpose computing are introduced for embedded systems on a chip (SOCs). Due to some advanced architectural features, like massive simultaneous multithreading, static performance analysis and high-level timing simulation are difficult to apply to code running on these systems. This paper extends a method for performance simulation of GPUs. The method uses automated performance annotations in the application's OpenCL C source code, and an extended performance model for derivation of a kernels runtime from metrics produced by the execution of annotated kernels. The final results are then generated using a probabilistic resource conflict model. The model reaches an accuracy of 90% on most test cases and delivers a higher average accuracy than previous methods.\",\"PeriodicalId\":346802,\"journal\":{\"name\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2015.7363655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在高性能和台式机市场取得成功后,用于通用计算的图形处理单元(gpu)被引入到芯片上的嵌入式系统(soc)中。由于一些高级的体系结构特性,如大规模同步多线程、静态性能分析和高级时序模拟,很难应用于在这些系统上运行的代码。本文扩展了一种gpu性能仿真方法。该方法在应用程序的OpenCL C源代码中使用自动性能注释,并使用扩展的性能模型,从执行注释的内核产生的度量中派生内核运行时。然后使用概率资源冲突模型生成最终结果。该模型在大多数测试用例上达到了90%的准确率,并且比以前的方法提供了更高的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving accuracy of source level timing simulation for GPUs using a probabilistic resource model
After their success in the high performance and desktop market, Graphic Processing Units (GPUs), that can be used for general purpose computing are introduced for embedded systems on a chip (SOCs). Due to some advanced architectural features, like massive simultaneous multithreading, static performance analysis and high-level timing simulation are difficult to apply to code running on these systems. This paper extends a method for performance simulation of GPUs. The method uses automated performance annotations in the application's OpenCL C source code, and an extended performance model for derivation of a kernels runtime from metrics produced by the execution of annotated kernels. The final results are then generated using a probabilistic resource conflict model. The model reaches an accuracy of 90% on most test cases and delivers a higher average accuracy than previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deterministic event-based control of Virtual Platforms for MPSoC software debugging Dynamic re-vectorization of binary code Experiences in speeding up computer vision applications on mobile computing platforms A power estimation technique for cycle-accurate higher-abstraction SystemC-based CPU models Framework for parameter analysis of FPGA-based image processing architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1