Rahul Pandita, Tao Xie, N. Tillmann, J. D. Halleux
{"title":"覆盖标准的指导测试生成","authors":"Rahul Pandita, Tao Xie, N. Tillmann, J. D. Halleux","doi":"10.1109/ICSM.2010.5609565","DOIUrl":null,"url":null,"abstract":"Test coverage criteria including boundary-value and logical coverage such as Modified Condition/Decision Coverage (MC/DC) have been increasingly used in safety-critical or mission-critical domains, complementing those more popularly used structural coverage criteria such as block or branch coverage. However, existing automated test-generation approaches often target at block or branch coverage for test generation and selection, and therefore do not support testing against boundary-value coverage or logical coverage. To address this issue, we propose a general approach that uses instrumentation to guide existing test-generation approaches to generate test inputs that achieve boundary-value and logical coverage for the program under test. Our preliminary evaluation shows that our approach effectively helps an approach based on Dynamic Symbolic Execution (DSE) to improve boundary-value and logical coverage of generated test inputs. The evaluation results show 30.5% maximum (23% average) increase in boundary-value coverage and 26% maximum (21.5% average) increase in logical coverage of the subject programs under test using our approach over without using our approach. In addition, our approach improves the fault-detection capability of generated test inputs by 12.5% maximum (11% average) compared to the test inputs generated without using our approach.","PeriodicalId":101801,"journal":{"name":"2010 IEEE International Conference on Software Maintenance","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Guided test generation for coverage criteria\",\"authors\":\"Rahul Pandita, Tao Xie, N. Tillmann, J. D. Halleux\",\"doi\":\"10.1109/ICSM.2010.5609565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test coverage criteria including boundary-value and logical coverage such as Modified Condition/Decision Coverage (MC/DC) have been increasingly used in safety-critical or mission-critical domains, complementing those more popularly used structural coverage criteria such as block or branch coverage. However, existing automated test-generation approaches often target at block or branch coverage for test generation and selection, and therefore do not support testing against boundary-value coverage or logical coverage. To address this issue, we propose a general approach that uses instrumentation to guide existing test-generation approaches to generate test inputs that achieve boundary-value and logical coverage for the program under test. Our preliminary evaluation shows that our approach effectively helps an approach based on Dynamic Symbolic Execution (DSE) to improve boundary-value and logical coverage of generated test inputs. The evaluation results show 30.5% maximum (23% average) increase in boundary-value coverage and 26% maximum (21.5% average) increase in logical coverage of the subject programs under test using our approach over without using our approach. In addition, our approach improves the fault-detection capability of generated test inputs by 12.5% maximum (11% average) compared to the test inputs generated without using our approach.\",\"PeriodicalId\":101801,\"journal\":{\"name\":\"2010 IEEE International Conference on Software Maintenance\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Software Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSM.2010.5609565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSM.2010.5609565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test coverage criteria including boundary-value and logical coverage such as Modified Condition/Decision Coverage (MC/DC) have been increasingly used in safety-critical or mission-critical domains, complementing those more popularly used structural coverage criteria such as block or branch coverage. However, existing automated test-generation approaches often target at block or branch coverage for test generation and selection, and therefore do not support testing against boundary-value coverage or logical coverage. To address this issue, we propose a general approach that uses instrumentation to guide existing test-generation approaches to generate test inputs that achieve boundary-value and logical coverage for the program under test. Our preliminary evaluation shows that our approach effectively helps an approach based on Dynamic Symbolic Execution (DSE) to improve boundary-value and logical coverage of generated test inputs. The evaluation results show 30.5% maximum (23% average) increase in boundary-value coverage and 26% maximum (21.5% average) increase in logical coverage of the subject programs under test using our approach over without using our approach. In addition, our approach improves the fault-detection capability of generated test inputs by 12.5% maximum (11% average) compared to the test inputs generated without using our approach.