覆盖标准的指导测试生成

Rahul Pandita, Tao Xie, N. Tillmann, J. D. Halleux
{"title":"覆盖标准的指导测试生成","authors":"Rahul Pandita, Tao Xie, N. Tillmann, J. D. Halleux","doi":"10.1109/ICSM.2010.5609565","DOIUrl":null,"url":null,"abstract":"Test coverage criteria including boundary-value and logical coverage such as Modified Condition/Decision Coverage (MC/DC) have been increasingly used in safety-critical or mission-critical domains, complementing those more popularly used structural coverage criteria such as block or branch coverage. However, existing automated test-generation approaches often target at block or branch coverage for test generation and selection, and therefore do not support testing against boundary-value coverage or logical coverage. To address this issue, we propose a general approach that uses instrumentation to guide existing test-generation approaches to generate test inputs that achieve boundary-value and logical coverage for the program under test. Our preliminary evaluation shows that our approach effectively helps an approach based on Dynamic Symbolic Execution (DSE) to improve boundary-value and logical coverage of generated test inputs. The evaluation results show 30.5% maximum (23% average) increase in boundary-value coverage and 26% maximum (21.5% average) increase in logical coverage of the subject programs under test using our approach over without using our approach. In addition, our approach improves the fault-detection capability of generated test inputs by 12.5% maximum (11% average) compared to the test inputs generated without using our approach.","PeriodicalId":101801,"journal":{"name":"2010 IEEE International Conference on Software Maintenance","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Guided test generation for coverage criteria\",\"authors\":\"Rahul Pandita, Tao Xie, N. Tillmann, J. D. Halleux\",\"doi\":\"10.1109/ICSM.2010.5609565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test coverage criteria including boundary-value and logical coverage such as Modified Condition/Decision Coverage (MC/DC) have been increasingly used in safety-critical or mission-critical domains, complementing those more popularly used structural coverage criteria such as block or branch coverage. However, existing automated test-generation approaches often target at block or branch coverage for test generation and selection, and therefore do not support testing against boundary-value coverage or logical coverage. To address this issue, we propose a general approach that uses instrumentation to guide existing test-generation approaches to generate test inputs that achieve boundary-value and logical coverage for the program under test. Our preliminary evaluation shows that our approach effectively helps an approach based on Dynamic Symbolic Execution (DSE) to improve boundary-value and logical coverage of generated test inputs. The evaluation results show 30.5% maximum (23% average) increase in boundary-value coverage and 26% maximum (21.5% average) increase in logical coverage of the subject programs under test using our approach over without using our approach. In addition, our approach improves the fault-detection capability of generated test inputs by 12.5% maximum (11% average) compared to the test inputs generated without using our approach.\",\"PeriodicalId\":101801,\"journal\":{\"name\":\"2010 IEEE International Conference on Software Maintenance\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Software Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSM.2010.5609565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSM.2010.5609565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

包括边值和逻辑覆盖的测试覆盖标准,如修改条件/决策覆盖(MC/DC),已经越来越多地用于安全关键或任务关键领域,补充那些更普遍使用的结构覆盖标准,如块或分支覆盖。然而,现有的自动化测试生成方法通常针对测试生成和选择的块或分支覆盖,因此不支持针对边界值覆盖或逻辑覆盖的测试。为了解决这个问题,我们提出了一种通用的方法,该方法使用仪器来指导现有的测试生成方法来生成测试输入,从而为被测程序实现边界值和逻辑覆盖。我们的初步评估表明,我们的方法有效地帮助了基于动态符号执行(DSE)的方法来改进生成的测试输入的边界值和逻辑覆盖。评估结果显示,与未使用我们的方法相比,使用我们的方法测试的主题程序的边界值覆盖率最大增加30.5%(平均23%),逻辑覆盖率最大增加26%(平均21.5%)。此外,与不使用我们的方法生成的测试输入相比,我们的方法将生成的测试输入的故障检测能力提高了12.5%(平均11%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guided test generation for coverage criteria
Test coverage criteria including boundary-value and logical coverage such as Modified Condition/Decision Coverage (MC/DC) have been increasingly used in safety-critical or mission-critical domains, complementing those more popularly used structural coverage criteria such as block or branch coverage. However, existing automated test-generation approaches often target at block or branch coverage for test generation and selection, and therefore do not support testing against boundary-value coverage or logical coverage. To address this issue, we propose a general approach that uses instrumentation to guide existing test-generation approaches to generate test inputs that achieve boundary-value and logical coverage for the program under test. Our preliminary evaluation shows that our approach effectively helps an approach based on Dynamic Symbolic Execution (DSE) to improve boundary-value and logical coverage of generated test inputs. The evaluation results show 30.5% maximum (23% average) increase in boundary-value coverage and 26% maximum (21.5% average) increase in logical coverage of the subject programs under test using our approach over without using our approach. In addition, our approach improves the fault-detection capability of generated test inputs by 12.5% maximum (11% average) compared to the test inputs generated without using our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conversion of fast inter-procedural static analysis to model checking Using Relational Topic Models to capture coupling among classes in object-oriented software systems Theil index for aggregation of software metrics values An approach to improving software inspections performance Automatically repairing test cases for evolving method declarations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1