Min Kyung Lee, Ishan Nigam, Angie Zhang, J. Afriyie, Zhizhen Qin, Sicun Gao
{"title":"参与式算法管理:工人福利模型的启发方法","authors":"Min Kyung Lee, Ishan Nigam, Angie Zhang, J. Afriyie, Zhizhen Qin, Sicun Gao","doi":"10.1145/3461702.3462628","DOIUrl":null,"url":null,"abstract":"Artificial intelligence is increasingly being used to manage the workforce. Algorithmic management promises organizational efficiency, but often undermines worker well-being. How can we computationally model worker well-being so that algorithmic management can be optimized for and assessed in terms of worker well-being? Toward this goal, we propose a participatory approach for worker well-being models. We first define worker well-being models: Work preference models---preferences about work and working conditions, and managerial fairness models---beliefs about fair resource allocation among multiple workers. We then propose elicitation methods to enable workers to build their own well-being models leveraging pairwise comparisons and ranking. As a case study, we evaluate our methods in the context of algorithmic work scheduling with 25 shift workers and 3 managers. The findings show that workers expressed idiosyncratic work preference models and more uniform managerial fairness models, and the elicitation methods helped workers discover their preferences and gave them a sense of empowerment. Our work provides a method and initial evidence for enabling participatory algorithmic management for worker well-being.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Participatory Algorithmic Management: Elicitation Methods for Worker Well-Being Models\",\"authors\":\"Min Kyung Lee, Ishan Nigam, Angie Zhang, J. Afriyie, Zhizhen Qin, Sicun Gao\",\"doi\":\"10.1145/3461702.3462628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence is increasingly being used to manage the workforce. Algorithmic management promises organizational efficiency, but often undermines worker well-being. How can we computationally model worker well-being so that algorithmic management can be optimized for and assessed in terms of worker well-being? Toward this goal, we propose a participatory approach for worker well-being models. We first define worker well-being models: Work preference models---preferences about work and working conditions, and managerial fairness models---beliefs about fair resource allocation among multiple workers. We then propose elicitation methods to enable workers to build their own well-being models leveraging pairwise comparisons and ranking. As a case study, we evaluate our methods in the context of algorithmic work scheduling with 25 shift workers and 3 managers. The findings show that workers expressed idiosyncratic work preference models and more uniform managerial fairness models, and the elicitation methods helped workers discover their preferences and gave them a sense of empowerment. Our work provides a method and initial evidence for enabling participatory algorithmic management for worker well-being.\",\"PeriodicalId\":197336,\"journal\":{\"name\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461702.3462628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Participatory Algorithmic Management: Elicitation Methods for Worker Well-Being Models
Artificial intelligence is increasingly being used to manage the workforce. Algorithmic management promises organizational efficiency, but often undermines worker well-being. How can we computationally model worker well-being so that algorithmic management can be optimized for and assessed in terms of worker well-being? Toward this goal, we propose a participatory approach for worker well-being models. We first define worker well-being models: Work preference models---preferences about work and working conditions, and managerial fairness models---beliefs about fair resource allocation among multiple workers. We then propose elicitation methods to enable workers to build their own well-being models leveraging pairwise comparisons and ranking. As a case study, we evaluate our methods in the context of algorithmic work scheduling with 25 shift workers and 3 managers. The findings show that workers expressed idiosyncratic work preference models and more uniform managerial fairness models, and the elicitation methods helped workers discover their preferences and gave them a sense of empowerment. Our work provides a method and initial evidence for enabling participatory algorithmic management for worker well-being.