一种基于更新描述的监控视频动作识别方法

A. Wiliem, V. Madasu, W. Boles, P. Yarlagadda
{"title":"一种基于更新描述的监控视频动作识别方法","authors":"A. Wiliem, V. Madasu, W. Boles, P. Yarlagadda","doi":"10.1109/DICTA.2010.55","DOIUrl":null,"url":null,"abstract":"In this paper, an approach for human action recognition is presented based on adaptive bag-of-words features. Bag-of-words techniques employ a codebook to describe a human action. For successful recognition, most action recognition systems currently require the optimal codebook size to be determined, as well as all instances of human actions to be available for computing the features. These requirements are difficult to satisfy in real life situations. An update - describe method for addressing these problems is proposed. Initially, interest point patches are extracted from action clips. Then, in the update step these patches are clustered using the Clustream algorithm. Each cluster centre corresponds to a visual word. A histogram of these visual words representing an action is constructed in the describe step. A chi-squared distance-based classifier is utilised for recognising actions. The proposed approach is implemented on benchmark KTH and Weizmann datasets.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Update-Describe Approach for Human Action Recognition in Surveillance Video\",\"authors\":\"A. Wiliem, V. Madasu, W. Boles, P. Yarlagadda\",\"doi\":\"10.1109/DICTA.2010.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach for human action recognition is presented based on adaptive bag-of-words features. Bag-of-words techniques employ a codebook to describe a human action. For successful recognition, most action recognition systems currently require the optimal codebook size to be determined, as well as all instances of human actions to be available for computing the features. These requirements are difficult to satisfy in real life situations. An update - describe method for addressing these problems is proposed. Initially, interest point patches are extracted from action clips. Then, in the update step these patches are clustered using the Clustream algorithm. Each cluster centre corresponds to a visual word. A histogram of these visual words representing an action is constructed in the describe step. A chi-squared distance-based classifier is utilised for recognising actions. The proposed approach is implemented on benchmark KTH and Weizmann datasets.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于自适应词袋特征的人体动作识别方法。语言袋技术使用密码本来描述人类的行为。为了成功识别,目前大多数动作识别系统需要确定最佳码本大小,以及可用于计算特征的所有人类动作实例。这些要求在现实生活中很难满足。提出了一种解决这些问题的更新描述方法。最初,兴趣点补丁是从动作片段中提取的。然后,在更新步骤中,使用Clustream算法对这些补丁进行聚类。每个聚类中心对应一个视觉词。在描述步骤中构建这些表示动作的视觉词的直方图。基于卡方距离的分类器用于识别动作。在基准KTH和Weizmann数据集上实现了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Update-Describe Approach for Human Action Recognition in Surveillance Video
In this paper, an approach for human action recognition is presented based on adaptive bag-of-words features. Bag-of-words techniques employ a codebook to describe a human action. For successful recognition, most action recognition systems currently require the optimal codebook size to be determined, as well as all instances of human actions to be available for computing the features. These requirements are difficult to satisfy in real life situations. An update - describe method for addressing these problems is proposed. Initially, interest point patches are extracted from action clips. Then, in the update step these patches are clustered using the Clustream algorithm. Each cluster centre corresponds to a visual word. A histogram of these visual words representing an action is constructed in the describe step. A chi-squared distance-based classifier is utilised for recognising actions. The proposed approach is implemented on benchmark KTH and Weizmann datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1